Antagonistic effects of polystyrene microplastics and tetracycline on Chlorella pyrenoidosa as revealed by infrared spectroscopy coupled with multivariate analysis
{"title":"Antagonistic effects of polystyrene microplastics and tetracycline on Chlorella pyrenoidosa as revealed by infrared spectroscopy coupled with multivariate analysis","authors":"Jiaxuan Song, Kai Yang, Aizhong Ding, Naifu Jin, Yujiao Sun, Dayi Zhang","doi":"10.1016/j.jhazmat.2025.137896","DOIUrl":null,"url":null,"abstract":"Microplastics and antibiotics are typical emerging contaminants in the environment, posing considerable risks to the ecosystem and human health. Previous studies have reported synergistic or antagonistic effects in the presence of both microplastics and antibiotics, destructing cell membranes, inhibiting photosynthetic capability, and inducing antioxidant enzyme activity. However, there is still a lack of comprehensive understanding of the mechanisms. This study applied infrared biospectroscopy and multivariate analysis to explore the physiological and biochemical toxicity of polystyrene microplastics and tetracycline co-exposure on <em>Chlorella pyrenoidosa</em>. Either tetracycline or polystyrene microplastics alone posed toxicities on <em>C. pyrenoidosa</em>, mainly due to changes in photosynthetic content, cell membrane permeability, MDA content and antioxidant enzyme activity. Co-exposure of tetracycline and polystyrene microplastics exhibited an antagonistic effect. Infrared spectroscopy coupled with multivariate analysis isolated the discriminating biomarkers representing different toxicity mechanisms, successfully explaining the mechanism of antagonism as reducing ROS production, regulating antioxidant enzyme activity, stabilizing cell membranes, and interfering with signaling and protein synthesis. A random forest model was developed and satisfactorily recognized the toxicity of individual toxins (accuracy of 98.75%, sensitivity of 99.22% and specificity of 99.65%). It also rapidly apportioned toxicity origin and evidenced that tetracycline contributed to the majority of binary toxicities. This study provided scientific guidance and a theoretical basis for assessing and apportioning the binary toxicities of emerging contaminants.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"54 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137896","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics and antibiotics are typical emerging contaminants in the environment, posing considerable risks to the ecosystem and human health. Previous studies have reported synergistic or antagonistic effects in the presence of both microplastics and antibiotics, destructing cell membranes, inhibiting photosynthetic capability, and inducing antioxidant enzyme activity. However, there is still a lack of comprehensive understanding of the mechanisms. This study applied infrared biospectroscopy and multivariate analysis to explore the physiological and biochemical toxicity of polystyrene microplastics and tetracycline co-exposure on Chlorella pyrenoidosa. Either tetracycline or polystyrene microplastics alone posed toxicities on C. pyrenoidosa, mainly due to changes in photosynthetic content, cell membrane permeability, MDA content and antioxidant enzyme activity. Co-exposure of tetracycline and polystyrene microplastics exhibited an antagonistic effect. Infrared spectroscopy coupled with multivariate analysis isolated the discriminating biomarkers representing different toxicity mechanisms, successfully explaining the mechanism of antagonism as reducing ROS production, regulating antioxidant enzyme activity, stabilizing cell membranes, and interfering with signaling and protein synthesis. A random forest model was developed and satisfactorily recognized the toxicity of individual toxins (accuracy of 98.75%, sensitivity of 99.22% and specificity of 99.65%). It also rapidly apportioned toxicity origin and evidenced that tetracycline contributed to the majority of binary toxicities. This study provided scientific guidance and a theoretical basis for assessing and apportioning the binary toxicities of emerging contaminants.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.