Diversifying wheat-based cropping systems with pulse crops enhances ecosystem services

IF 6.4 1区 农林科学 Q1 AGRONOMY Agronomy for Sustainable Development Pub Date : 2025-03-12 DOI:10.1007/s13593-025-01009-2
Kui Liu, Mohammad Khakbazan, Manjula Bandara, Chang Liang, Pedro Vitor Ferrari Machado
{"title":"Diversifying wheat-based cropping systems with pulse crops enhances ecosystem services","authors":"Kui Liu,&nbsp;Mohammad Khakbazan,&nbsp;Manjula Bandara,&nbsp;Chang Liang,&nbsp;Pedro Vitor Ferrari Machado","doi":"10.1007/s13593-025-01009-2","DOIUrl":null,"url":null,"abstract":"<div><p>Pulse crops are commonly used to improve nitrogen management and diversify cereal-based cropping systems. However, integrated assessments of diversified rotations with pulse crops using plant, soil, and environmental quality indicators remain limited and relatively underexplored. A comprehensive evaluation of such diversified rotations based on agronomic performance, economic returns, and environmental sustainability over time is essential for enhancing cropping system resilience. An eight-year study (two cycles of 4-year rotation) was conducted at two locations to determine the effects of diversification with pulses on ecosystem services indicators including productivity, resource use efficiency, soil carbon, soil nitrogen, carbon footprint, and economic returns. Four cropping systems were evaluated, including a low-diversified rotation of lentil-wheat-lentil-wheat, a moderately diversified rotation of pea-wheat-lentil-wheat, a highly diversified rotation of pea-mustard-lentil-wheat, and a wheat monocrop control. At the 4-year rotation level, diversified rotations increased yield by 22–36%, water use efficiency by 31–42%, energy productivity by 78–86%, and economic returns by 46–65%, compared to the wheat monocrop. Additionally, diversified rotations resulted in net CO<sub>2</sub> withdrawal when accounting for carbon sequestration in the soil. There was no difference between moderately and highly diversified rotations, suggesting that a large portion of diversification benefits can be achieved at the moderately diversified rotation level. Compared with the wheat monocrop, diversified rotations reduced nitrogen fertilizer inputs and resulted in a 10–31% lower partial nitrogen balance at the end of 8-year rotations. Moreover, diversifying cropping systems with pulse crops had no adverse effect on soil organic carbon, despite relatively low straw returns from pulse crops. These results, assessed using multiple system indicators at both the crop phase and rotation levels, reveal that diversifying rotations with pulse crops, even at a moderate level, can effectively improve the ecosystem services, contributing to the sustainability of cropping systems.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"45 2","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-025-01009-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-025-01009-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulse crops are commonly used to improve nitrogen management and diversify cereal-based cropping systems. However, integrated assessments of diversified rotations with pulse crops using plant, soil, and environmental quality indicators remain limited and relatively underexplored. A comprehensive evaluation of such diversified rotations based on agronomic performance, economic returns, and environmental sustainability over time is essential for enhancing cropping system resilience. An eight-year study (two cycles of 4-year rotation) was conducted at two locations to determine the effects of diversification with pulses on ecosystem services indicators including productivity, resource use efficiency, soil carbon, soil nitrogen, carbon footprint, and economic returns. Four cropping systems were evaluated, including a low-diversified rotation of lentil-wheat-lentil-wheat, a moderately diversified rotation of pea-wheat-lentil-wheat, a highly diversified rotation of pea-mustard-lentil-wheat, and a wheat monocrop control. At the 4-year rotation level, diversified rotations increased yield by 22–36%, water use efficiency by 31–42%, energy productivity by 78–86%, and economic returns by 46–65%, compared to the wheat monocrop. Additionally, diversified rotations resulted in net CO2 withdrawal when accounting for carbon sequestration in the soil. There was no difference between moderately and highly diversified rotations, suggesting that a large portion of diversification benefits can be achieved at the moderately diversified rotation level. Compared with the wheat monocrop, diversified rotations reduced nitrogen fertilizer inputs and resulted in a 10–31% lower partial nitrogen balance at the end of 8-year rotations. Moreover, diversifying cropping systems with pulse crops had no adverse effect on soil organic carbon, despite relatively low straw returns from pulse crops. These results, assessed using multiple system indicators at both the crop phase and rotation levels, reveal that diversifying rotations with pulse crops, even at a moderate level, can effectively improve the ecosystem services, contributing to the sustainability of cropping systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy for Sustainable Development
Agronomy for Sustainable Development 农林科学-农艺学
CiteScore
10.70
自引率
8.20%
发文量
108
审稿时长
3 months
期刊介绍: Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences. ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels. Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.
期刊最新文献
Farmer-centric On-Farm Experimentation: digital tools for a scalable transformative pathway Balancing cover crop benefits and economic realities in Mediterranean rice farming Methodological challenges in assessing the viability of agroecological practices: lessons from a multi-case study in Africa Vineyard design and plant material choices effect on grapevine yield: analysis of a big dataset in the south of France Diversifying wheat-based cropping systems with pulse crops enhances ecosystem services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1