Groundwater quality drivers in the drought-prone Thakurgaon District, Northwestern Bangladesh: An integrated fuzzy logic and statistical modeling approach
Abu Reza Md Towfiqul Islam , A.J. Raihan , Md. Yousuf Mia , Md. Saiful Islam , Subodh Chandra Pal , Tanmoy Biswas , Bilkis A. Begum , Tasrina R. Choudhury , Mohammed Ali Alshehri , Venkatramanan Senapathi , M. Safiur Rahman
{"title":"Groundwater quality drivers in the drought-prone Thakurgaon District, Northwestern Bangladesh: An integrated fuzzy logic and statistical modeling approach","authors":"Abu Reza Md Towfiqul Islam , A.J. Raihan , Md. Yousuf Mia , Md. Saiful Islam , Subodh Chandra Pal , Tanmoy Biswas , Bilkis A. Begum , Tasrina R. Choudhury , Mohammed Ali Alshehri , Venkatramanan Senapathi , M. Safiur Rahman","doi":"10.1016/j.jconhyd.2025.104533","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater quality in the drought-prone Thakurgaon District, Northwestern Bangladesh, is deteriorating due to a combination of natural and anthropogenic factors. This study evaluates the key drivers of groundwater quality degradation by employing ecotoxicological risk indices, such as the Heavy Metal Pollution Index (HPI), Heavy Metal Evaluation Index (HEI), and Nemerow's Pollution Index (NPI). An innovative fuzzy logic approach is used to integrate these indices and reduce uncertainty, while Automatic Linear Modeling (ALM) predicts the primary impacts on the Fuzzy Groundwater Quality Index (FGWQI). Additionally, Monte Carlo simulations assess probabilistic health risks and sensitivity. Groundwater samples from 40 wells were analyzed for physicochemical parameters and heavy metal concentrations. The results show that 25 % of the samples are unsuitable for drinking, and 17.5 % are unfit for household use, based on HPI and HEI values. Fuzzy analysis reveals that 22.5 %, 47.5 %, and 30 % of the samples exhibit excellent, good, and poor quality, respectively. The overlay of FGWQI with Land Use/Land Cover (LULC) maps identifies areas with excellent groundwater quality in the southern parts of the region, while the northern areas suffer from poor quality due to overexploitation. One-way ANOVA indicates that rainfall, water discharge, and LULC significantly affect FGWQI. The ALM results highlight HEI (0.62) and HPI (0.38) as the main factors influencing FGWQI. Health risk analysis reveals elevated non-carcinogenic risks due to arsenic and lead ingestion, particularly for children. These findings emphasize the need for targeted policies and interventions to mitigate health risks and ensure the well-being of the community.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"271 ","pages":"Article 104533"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000385","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater quality in the drought-prone Thakurgaon District, Northwestern Bangladesh, is deteriorating due to a combination of natural and anthropogenic factors. This study evaluates the key drivers of groundwater quality degradation by employing ecotoxicological risk indices, such as the Heavy Metal Pollution Index (HPI), Heavy Metal Evaluation Index (HEI), and Nemerow's Pollution Index (NPI). An innovative fuzzy logic approach is used to integrate these indices and reduce uncertainty, while Automatic Linear Modeling (ALM) predicts the primary impacts on the Fuzzy Groundwater Quality Index (FGWQI). Additionally, Monte Carlo simulations assess probabilistic health risks and sensitivity. Groundwater samples from 40 wells were analyzed for physicochemical parameters and heavy metal concentrations. The results show that 25 % of the samples are unsuitable for drinking, and 17.5 % are unfit for household use, based on HPI and HEI values. Fuzzy analysis reveals that 22.5 %, 47.5 %, and 30 % of the samples exhibit excellent, good, and poor quality, respectively. The overlay of FGWQI with Land Use/Land Cover (LULC) maps identifies areas with excellent groundwater quality in the southern parts of the region, while the northern areas suffer from poor quality due to overexploitation. One-way ANOVA indicates that rainfall, water discharge, and LULC significantly affect FGWQI. The ALM results highlight HEI (0.62) and HPI (0.38) as the main factors influencing FGWQI. Health risk analysis reveals elevated non-carcinogenic risks due to arsenic and lead ingestion, particularly for children. These findings emphasize the need for targeted policies and interventions to mitigate health risks and ensure the well-being of the community.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.