{"title":"Remediation of toluene-contaminated soils by sequential treatment: Soil vapor extraction systems and internal combustion engine units","authors":"Zhengju Lyu, Weilong Zhou, Xiaolong Gao, Haowei Zheng, Jianli Jia","doi":"10.1016/j.jconhyd.2025.104532","DOIUrl":null,"url":null,"abstract":"<div><div>This paper reports soil vapor extraction (SVE) systems and internal combustion engine (ICE) units to remediate soils contaminated with toluene. Response surface methodology (RSM) was used to evaluate the influence of toluene concentration, air flow rate and soil water content on SVE systems, thus to identify the optimal conditions for SVE systems. ICE units were used to treat the SVE off-gas extracted from toluene-contaminated soils, and the performance in removing toluene was effectively evaluated. Furthermore, the pulsed operation of SVE systems and the thermal enhancement with ICE off-gas were explored, and the positive effects on remediation efficiency were analyzed. The remediation experiments performed in toluene-contaminated soils allowed concluding that the optimal desorption time of toluene was 615 min with the toluene concentration of 0.3 g/kg, air flow rate of 10 L/min and soil water content of 9 %. The ICE units showed that the main components of ICE off-gas were CO, CO<sub>2</sub> and hydrocarbon (HC). After 25 min, the concentration of HC decreased to 140 ppm, and the volume fractions of CO and CO<sub>2</sub> were 0.3 % and 9.5 % respectively. ICE units had consistently achieved toluene destruction and removal efficiencies (DREs) of 100 %. Moreover, the pulsed operation and thermal enhancement promoted equilibrium partitioning of toluene between the soil matrix and the gas phase, thereby facilitating the desorption of toluene, which decreased the required time and energy needed for the remediation. This study provides theoretical support for system design and applicability assessment of SVE systems and ICE units in the remediation of contaminated soils.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"271 ","pages":"Article 104532"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000373","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports soil vapor extraction (SVE) systems and internal combustion engine (ICE) units to remediate soils contaminated with toluene. Response surface methodology (RSM) was used to evaluate the influence of toluene concentration, air flow rate and soil water content on SVE systems, thus to identify the optimal conditions for SVE systems. ICE units were used to treat the SVE off-gas extracted from toluene-contaminated soils, and the performance in removing toluene was effectively evaluated. Furthermore, the pulsed operation of SVE systems and the thermal enhancement with ICE off-gas were explored, and the positive effects on remediation efficiency were analyzed. The remediation experiments performed in toluene-contaminated soils allowed concluding that the optimal desorption time of toluene was 615 min with the toluene concentration of 0.3 g/kg, air flow rate of 10 L/min and soil water content of 9 %. The ICE units showed that the main components of ICE off-gas were CO, CO2 and hydrocarbon (HC). After 25 min, the concentration of HC decreased to 140 ppm, and the volume fractions of CO and CO2 were 0.3 % and 9.5 % respectively. ICE units had consistently achieved toluene destruction and removal efficiencies (DREs) of 100 %. Moreover, the pulsed operation and thermal enhancement promoted equilibrium partitioning of toluene between the soil matrix and the gas phase, thereby facilitating the desorption of toluene, which decreased the required time and energy needed for the remediation. This study provides theoretical support for system design and applicability assessment of SVE systems and ICE units in the remediation of contaminated soils.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.