{"title":"Simulated effect of defect volume and location on very high cycle fatigue of laser beam powder bed fused AlSi10Mg","authors":"Kamin Tahmasbi , Mohammadreza Yaghoobi , Shuai Shao , Nima Shamsaei , Meysam Haghshenas","doi":"10.1016/j.ijfatigue.2025.108926","DOIUrl":null,"url":null,"abstract":"<div><div>This study quantifies the interaction between volumetric defect location and size on the very high cycle fatigue (VHCF) of laser beam powder bed fused (LB-PBF) AlSi10Mg. Crystal plasticity finite element method (CPFEM) simulations were used to investigate the effects of defect location and size on the driving force for crack initiation. The CPFEM model was calibrated against uniaxial and cyclic experimental data of LB-PBF AlSi10Mg. Defect characteristics were informed by experimental data from the specimens produced in various geometries to create realistic representative volume elements (RVEs) with equivalent volume fractions of defects. By embedding defects of varying sizes and locations within the RVEs, fatigue indicator parameters (FIPs) were calculated to analyze the impact of defects’ characteristics on fatigue performance. Different combinations of defect volume and locations were generated for various microstructure instantiations, providing insight into extreme value fatigue responses. Larger defect volumes located on free surfaces consistently generated the highest FIPs, suggesting defect size and boundary proximity intensify stress concentration effects. RVEs with multiple smaller defects produced lower FIPs than those with single large critical defects. These findings underscore the critical role of defect characteristics on fatigue life, providing a foundation for future predictive modeling in fatigue-sensitive AM applications.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"197 ","pages":"Article 108926"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325001239","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study quantifies the interaction between volumetric defect location and size on the very high cycle fatigue (VHCF) of laser beam powder bed fused (LB-PBF) AlSi10Mg. Crystal plasticity finite element method (CPFEM) simulations were used to investigate the effects of defect location and size on the driving force for crack initiation. The CPFEM model was calibrated against uniaxial and cyclic experimental data of LB-PBF AlSi10Mg. Defect characteristics were informed by experimental data from the specimens produced in various geometries to create realistic representative volume elements (RVEs) with equivalent volume fractions of defects. By embedding defects of varying sizes and locations within the RVEs, fatigue indicator parameters (FIPs) were calculated to analyze the impact of defects’ characteristics on fatigue performance. Different combinations of defect volume and locations were generated for various microstructure instantiations, providing insight into extreme value fatigue responses. Larger defect volumes located on free surfaces consistently generated the highest FIPs, suggesting defect size and boundary proximity intensify stress concentration effects. RVEs with multiple smaller defects produced lower FIPs than those with single large critical defects. These findings underscore the critical role of defect characteristics on fatigue life, providing a foundation for future predictive modeling in fatigue-sensitive AM applications.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.