Machine learning methods to study sequence–ensemble–function relationships in disordered proteins

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2025-03-12 DOI:10.1016/j.sbi.2025.103028
Sören von Bülow , Giulio Tesei , Kresten Lindorff-Larsen
{"title":"Machine learning methods to study sequence–ensemble–function relationships in disordered proteins","authors":"Sören von Bülow ,&nbsp;Giulio Tesei ,&nbsp;Kresten Lindorff-Larsen","doi":"10.1016/j.sbi.2025.103028","DOIUrl":null,"url":null,"abstract":"<div><div>Recent years have seen tremendous developments in the use of machine learning models to link amino-acid sequence, structure, and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences that comprise intrinsically disordered regions. We here review developments in the study of sequence–ensemble–function relationships of disordered proteins that exploit or are used to train machine learning models. These include methods for generating conformational ensembles and designing new sequences, and for linking sequences to biophysical properties and biological functions. We highlight how these developments are built on a tight integration between experiment, theory and simulations, and account for evolutionary constraints, which operate on sequences of disordered regions differently than on those of folded domains.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103028"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen tremendous developments in the use of machine learning models to link amino-acid sequence, structure, and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences that comprise intrinsically disordered regions. We here review developments in the study of sequence–ensemble–function relationships of disordered proteins that exploit or are used to train machine learning models. These include methods for generating conformational ensembles and designing new sequences, and for linking sequences to biophysical properties and biological functions. We highlight how these developments are built on a tight integration between experiment, theory and simulations, and account for evolutionary constraints, which operate on sequences of disordered regions differently than on those of folded domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Machine learning methods to study sequence–ensemble–function relationships in disordered proteins Editorial overview: Catalysis and regulation (2024): Conformational dynamics of RNA and kinase signaling Atomistic molecular dynamics simulations of intrinsically disordered proteins Rational design of cyclic peptides, with an emphasis on bicyclic peptides Deciphering driving forces of biomolecular phase separation from simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1