Sören von Bülow , Giulio Tesei , Kresten Lindorff-Larsen
{"title":"Machine learning methods to study sequence–ensemble–function relationships in disordered proteins","authors":"Sören von Bülow , Giulio Tesei , Kresten Lindorff-Larsen","doi":"10.1016/j.sbi.2025.103028","DOIUrl":null,"url":null,"abstract":"<div><div>Recent years have seen tremendous developments in the use of machine learning models to link amino-acid sequence, structure, and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences that comprise intrinsically disordered regions. We here review developments in the study of sequence–ensemble–function relationships of disordered proteins that exploit or are used to train machine learning models. These include methods for generating conformational ensembles and designing new sequences, and for linking sequences to biophysical properties and biological functions. We highlight how these developments are built on a tight integration between experiment, theory and simulations, and account for evolutionary constraints, which operate on sequences of disordered regions differently than on those of folded domains.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103028"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years have seen tremendous developments in the use of machine learning models to link amino-acid sequence, structure, and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences that comprise intrinsically disordered regions. We here review developments in the study of sequence–ensemble–function relationships of disordered proteins that exploit or are used to train machine learning models. These include methods for generating conformational ensembles and designing new sequences, and for linking sequences to biophysical properties and biological functions. We highlight how these developments are built on a tight integration between experiment, theory and simulations, and account for evolutionary constraints, which operate on sequences of disordered regions differently than on those of folded domains.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation