Informatics-assisted proteomics revealing the anti-inflammatory effects of satsuma orange (Citrus unshiu) peel flavonoid extract in LPS-stimulated RAW 264.7 cells
Adhimoolam Karthikeyan, Hun Hwan Kim, Sureshbabu Anjana, Smirnova Elena, Mohammad Moniruzzaman, Senthil Kalaiselvi, Gon Sup Kim, Taesun Min
{"title":"Informatics-assisted proteomics revealing the anti-inflammatory effects of satsuma orange (Citrus unshiu) peel flavonoid extract in LPS-stimulated RAW 264.7 cells","authors":"Adhimoolam Karthikeyan, Hun Hwan Kim, Sureshbabu Anjana, Smirnova Elena, Mohammad Moniruzzaman, Senthil Kalaiselvi, Gon Sup Kim, Taesun Min","doi":"10.1007/s10068-025-01830-1","DOIUrl":null,"url":null,"abstract":"<div><p><i>Citrus unshiu</i> peel (CUP), rich in flavonoids, has been traditionally used for its health benefits. This study investigated the anti-inflammatory effects of CUP flavonoid extract (CUPFE) in lipopolysaccharide (LPS)-activated RAW 264.7 cells through proteomics analysis. CUPFE significantly reduced the inflammatory mediators and cytokines (nitric oxide, IL-6, and CCL-2) production. Quantitative proteomics analysis using LC–MS/MS identified 140 differentially expressed proteins between the CUPFE and LPS groups, with 86 proteins upregulated and 54 downregulated. Notably, CUPFE negatively regulated 56 proteins induced by LPS. Functional enrichment analysis using gene ontology and Kyoto Encyclopedia of Genes and Genomes revealed that most of these proteins are involved in signal transduction pathways (TNF-α, NF-κB, PI3K-Akt, mTOR, and MAPK) regulating inflammatory processes. Further analysis showed that CUPFE interferes these signaling pathways in a dose-dependent manner, counteracting the LPS-induced effects. Collectively, this study reveals CUPFE’s anti-inflammatory effects, laying basis for future research on treating inflammation-related conditions.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"34 and Processing","pages":"1207 - 1218"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-025-01830-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Citrus unshiu peel (CUP), rich in flavonoids, has been traditionally used for its health benefits. This study investigated the anti-inflammatory effects of CUP flavonoid extract (CUPFE) in lipopolysaccharide (LPS)-activated RAW 264.7 cells through proteomics analysis. CUPFE significantly reduced the inflammatory mediators and cytokines (nitric oxide, IL-6, and CCL-2) production. Quantitative proteomics analysis using LC–MS/MS identified 140 differentially expressed proteins between the CUPFE and LPS groups, with 86 proteins upregulated and 54 downregulated. Notably, CUPFE negatively regulated 56 proteins induced by LPS. Functional enrichment analysis using gene ontology and Kyoto Encyclopedia of Genes and Genomes revealed that most of these proteins are involved in signal transduction pathways (TNF-α, NF-κB, PI3K-Akt, mTOR, and MAPK) regulating inflammatory processes. Further analysis showed that CUPFE interferes these signaling pathways in a dose-dependent manner, counteracting the LPS-induced effects. Collectively, this study reveals CUPFE’s anti-inflammatory effects, laying basis for future research on treating inflammation-related conditions.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.