Experimental Study on Underwater Explosive Weld Interface and Mechanical Properties of Carbon Steel–Stainless Steel

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2025-02-27 DOI:10.1002/ese3.2077
Chen Jinhua, Song Jialiang, Zhou Dapeng, Zhao Xin, Yang Wen, Zhang Yangguang
{"title":"Experimental Study on Underwater Explosive Weld Interface and Mechanical Properties of Carbon Steel–Stainless Steel","authors":"Chen Jinhua,&nbsp;Song Jialiang,&nbsp;Zhou Dapeng,&nbsp;Zhao Xin,&nbsp;Yang Wen,&nbsp;Zhang Yangguang","doi":"10.1002/ese3.2077","DOIUrl":null,"url":null,"abstract":"<p>To investigate the influence of the thickness of the intermediate water layer and the thickness of the explosive on the quality of underwater explosive welding of Q235R carbon steel 304 stainless steel, underwater explosive welding experiments were designed under different process conditions. The bonding speed and bonding pressure of the base composite plate during the welding process were tested, and the waveform and mechanical properties of the bonding interface of the composite plate were tested. The experimental results show that its tensile strength is between 444.2750 and 464.7724 MPa, with an average tensile strength of 454.5337 MPa, which is 7%–13% higher than the composite plate prepared by the hot rolling process. When the thickness of the explosive layer and the intermediate water layer is 10 mm and the bonding pressure is 865 MPa, the welding is successful. When the thickness of the explosive layer is 20 mm, as the thickness of the intermediate water layer increases from 10 to 30 mm, the bonding pressure decreases from 8668 to 3245 MPa, and the welding is successful. However, when the thickness of the intermediate layer was further increased to 40 mm, the welding failed and the bonding pressure dropped to 1084 MPa. Due to the fixed thickness of the intermediate water layer, increasing the thickness of the explosive layer will weaken the mechanical strength of the composite plate. Our research provides theoretical support for the preparation of composite metals by explosive welding, which is of great significance for promoting the development of explosive welding technology.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1392-1401"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2077","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the influence of the thickness of the intermediate water layer and the thickness of the explosive on the quality of underwater explosive welding of Q235R carbon steel 304 stainless steel, underwater explosive welding experiments were designed under different process conditions. The bonding speed and bonding pressure of the base composite plate during the welding process were tested, and the waveform and mechanical properties of the bonding interface of the composite plate were tested. The experimental results show that its tensile strength is between 444.2750 and 464.7724 MPa, with an average tensile strength of 454.5337 MPa, which is 7%–13% higher than the composite plate prepared by the hot rolling process. When the thickness of the explosive layer and the intermediate water layer is 10 mm and the bonding pressure is 865 MPa, the welding is successful. When the thickness of the explosive layer is 20 mm, as the thickness of the intermediate water layer increases from 10 to 30 mm, the bonding pressure decreases from 8668 to 3245 MPa, and the welding is successful. However, when the thickness of the intermediate layer was further increased to 40 mm, the welding failed and the bonding pressure dropped to 1084 MPa. Due to the fixed thickness of the intermediate water layer, increasing the thickness of the explosive layer will weaken the mechanical strength of the composite plate. Our research provides theoretical support for the preparation of composite metals by explosive welding, which is of great significance for promoting the development of explosive welding technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Experimental Study on Underwater Explosive Weld Interface and Mechanical Properties of Carbon Steel–Stainless Steel Exploration of 3D Coal Seam Geological Modeling Visualization and Gas Content Prediction Technology Based on Borehole Data Research on the Applicability of Hybrid RANS/LES Models to Predict the Flow Behavior in Bulb Tubular Pump Under Rated and Stall Conditions High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1