Flagellar Assembly Factor FliW2 De-Represses Helicobacter pylori FlaA-Mediated Motility by Allosteric Obstruction of Global Regulator CsrA

IF 4.3 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Helicobacter Pub Date : 2025-03-13 DOI:10.1111/hel.70019
Marcia Shu-Wei Su, Benjamin Dickins, Fang Yie Kiang, Wei-Jiun Tsai, Yueh-Lin Chen, Jenn-Wei Chen, Shuying Wang, Pei-Jane Tsai, Jiunn-Jong Wu
{"title":"Flagellar Assembly Factor FliW2 De-Represses Helicobacter pylori FlaA-Mediated Motility by Allosteric Obstruction of Global Regulator CsrA","authors":"Marcia Shu-Wei Su,&nbsp;Benjamin Dickins,&nbsp;Fang Yie Kiang,&nbsp;Wei-Jiun Tsai,&nbsp;Yueh-Lin Chen,&nbsp;Jenn-Wei Chen,&nbsp;Shuying Wang,&nbsp;Pei-Jane Tsai,&nbsp;Jiunn-Jong Wu","doi":"10.1111/hel.70019","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p><i>Helicobacter pylori</i> colonizes the human stomach as a dominant member of the gastric microbiota and constitutively expresses flagellar motility for survival. Carbon storage regulator A (CsrA) is a posttranscriptional global regulator and a critical determinant of <i>H. pylori</i>'s motility and pathogenicity. The regulation of <i>H. pylori</i> CsrA is still uncertain although in other species CsrA is reported to be antagonized by small RNAs and proteins. In this study, we attempted to unveil how CsrA is regulated and hypothesized that <i>H. pylori</i> CsrA activity is antagonized by a flagellar assembly factor, FliW2, via protein allosteric obstruction.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>Multiple sequence comparisons indicated that, along its length and in contrast to <i>fliW1</i>, the <i>fliW2</i> of <i>H. pylori</i> J99 is conserved. We then generated an isogenic Δ<i>fliW2</i> strain whose function was characterized using phenotypic and biochemical approaches. We also applied a machine learning approach (AlphaFold2) to predict FliW2-CsrA binding domains and investigated the FliW2-CsrA interaction using pull-down assays and in vivo bacterial two-hybrid systems.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We observed the reduced expression of major flagellin FlaA and impaired flagellar filaments that attenuated the motility of the Δ<i>fliW2</i> strain. Furthermore, a direct interaction between FliW2 and CsrA was demonstrated, and a novel region of the C-terminal extension of CsrA was suggested to be crucial for CsrA interacting with FliW2. Based on our AlphaFold2 prediction, this C-terminal region of FliW2-CsrA interaction does not overlap with CsrA's N-terminal RNA binding domain, implying that FliW2 allosterically antagonizes CsrA activity and restricts CsrA's binding to <i>flaA</i> mRNAs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our data points to novel regulatory roles that the <i>H. pylori</i> flagellar assembly factor FliW2 has in obstructing CsrA activity, and thus FliW2 may indirectly antagonize CsrA's regulation of <i>flaA</i> mRNA processing and translation. Our findings reveal a new regulatory mechanism of flagellar motility in <i>H. pylori</i>.</p>\n </section>\n </div>","PeriodicalId":13223,"journal":{"name":"Helicobacter","volume":"30 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/hel.70019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helicobacter","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/hel.70019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Helicobacter pylori colonizes the human stomach as a dominant member of the gastric microbiota and constitutively expresses flagellar motility for survival. Carbon storage regulator A (CsrA) is a posttranscriptional global regulator and a critical determinant of H. pylori's motility and pathogenicity. The regulation of H. pylori CsrA is still uncertain although in other species CsrA is reported to be antagonized by small RNAs and proteins. In this study, we attempted to unveil how CsrA is regulated and hypothesized that H. pylori CsrA activity is antagonized by a flagellar assembly factor, FliW2, via protein allosteric obstruction.

Materials and Methods

Multiple sequence comparisons indicated that, along its length and in contrast to fliW1, the fliW2 of H. pylori J99 is conserved. We then generated an isogenic ΔfliW2 strain whose function was characterized using phenotypic and biochemical approaches. We also applied a machine learning approach (AlphaFold2) to predict FliW2-CsrA binding domains and investigated the FliW2-CsrA interaction using pull-down assays and in vivo bacterial two-hybrid systems.

Results

We observed the reduced expression of major flagellin FlaA and impaired flagellar filaments that attenuated the motility of the ΔfliW2 strain. Furthermore, a direct interaction between FliW2 and CsrA was demonstrated, and a novel region of the C-terminal extension of CsrA was suggested to be crucial for CsrA interacting with FliW2. Based on our AlphaFold2 prediction, this C-terminal region of FliW2-CsrA interaction does not overlap with CsrA's N-terminal RNA binding domain, implying that FliW2 allosterically antagonizes CsrA activity and restricts CsrA's binding to flaA mRNAs.

Conclusions

Our data points to novel regulatory roles that the H. pylori flagellar assembly factor FliW2 has in obstructing CsrA activity, and thus FliW2 may indirectly antagonize CsrA's regulation of flaA mRNA processing and translation. Our findings reveal a new regulatory mechanism of flagellar motility in H. pylori.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Helicobacter
Helicobacter 医学-微生物学
CiteScore
8.40
自引率
9.10%
发文量
76
审稿时长
2 months
期刊介绍: Helicobacter is edited by Professor David Y Graham. The editorial and peer review process is an independent process. Whenever there is a conflict of interest, the editor and editorial board will declare their interests and affiliations. Helicobacter recognises the critical role that has been established for Helicobacter pylori in peptic ulcer, gastric adenocarcinoma, and primary gastric lymphoma. As new helicobacter species are now regularly being discovered, Helicobacter covers the entire range of helicobacter research, increasing communication among the fields of gastroenterology; microbiology; vaccine development; laboratory animal science.
期刊最新文献
Innate Immunity in Helicobacter pylori Infection and Gastric Oncogenesis Flagellar Assembly Factor FliW2 De-Represses Helicobacter pylori FlaA-Mediated Motility by Allosteric Obstruction of Global Regulator CsrA Helicobacter pylori and Colorectal Cancer: Meeting Sir Austin Bradford Hill's Causality Criteria Global Population Structure, Virulence Factors and Antibiotic Resistance of Helicobacter pylori: A Pooled Analysis of 4067 Isolates From 76 Countries Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1