Fall and rise of a threatened raptor: Unraveling long-term population dynamics with spatially explicit integrated models

IF 4.3 2区 环境科学与生态学 Q1 ECOLOGY Ecological Applications Pub Date : 2025-03-11 DOI:10.1002/eap.70013
Jaume A. Badia-Boher, Antonio Hernández-Matías, Santi Mañosa, Francesc Parés, Josep Maria Bas, Diego J. Arévalo-Ayala, Joan Real
{"title":"Fall and rise of a threatened raptor: Unraveling long-term population dynamics with spatially explicit integrated models","authors":"Jaume A. Badia-Boher,&nbsp;Antonio Hernández-Matías,&nbsp;Santi Mañosa,&nbsp;Francesc Parés,&nbsp;Josep Maria Bas,&nbsp;Diego J. Arévalo-Ayala,&nbsp;Joan Real","doi":"10.1002/eap.70013","DOIUrl":null,"url":null,"abstract":"<p>Population dynamics are governed by the so-called four BIDE processes: birth, immigration, death, and emigration. However, most population models fail to explicitly consider all four processes, which may hinder a comprehensive understanding of how and why populations change over time. The advent of Integrated Population Models (IPMs) and recent developments in spatial mark–recapture models have enabled deeper insights into demography and dispersal. In this study, we merged both kinds of models into a spatially explicit IPM. By integrating count, reproduction, mark–recapture, and dispersal data, this framework permitted the separate modeling of all BIDE processes, which subsequently allowed (1) a fine-scale estimation of population dynamics and (2) the estimation of central population parameters and stages that have traditionally been elusive in demographic studies but are key to applied conservation, such as the long-term dynamics of floaters (sexually mature non-breeders), sink–source status, and dispersal processes. Using this approach, we carried out a fine-scale assessment of the long-term dynamics and demographic drivers of one long-lived Bonelli's eagle population from Western Europe (1986–2020). Our results illustrated a considerable population decline and subsequent recovery alongside multiple demographic insights scarcely documented to date in long-lived species. First, we reported a decrease and subsequent increase in floater numbers probably associated with parallel changes in the breeding population, hence contributing to the scarce empirical knowledge available about the role and dynamics of floaters. Second, we detected a change in average population functioning from a sink to a neutral contributor, thus shedding light on the flexibility and drivers of sink-source dynamics. Third, we underscored the central role of non-breeder survival for population recovery, suggesting that long-lived species conservation action should not only focus on adult or breeding populations, as is typically the case. Fourth, we quantified the magnitudes and variations of local and dispersal processes in the long term and discussed their potential implications in terms of management implementation. Overall, our study highlights the potential of spatially explicit IPMs to build more complete assessments of population dynamics, contribute to better-informed conservation action, and help fill knowledge gaps in ecological sciences.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"35 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.70013","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Population dynamics are governed by the so-called four BIDE processes: birth, immigration, death, and emigration. However, most population models fail to explicitly consider all four processes, which may hinder a comprehensive understanding of how and why populations change over time. The advent of Integrated Population Models (IPMs) and recent developments in spatial mark–recapture models have enabled deeper insights into demography and dispersal. In this study, we merged both kinds of models into a spatially explicit IPM. By integrating count, reproduction, mark–recapture, and dispersal data, this framework permitted the separate modeling of all BIDE processes, which subsequently allowed (1) a fine-scale estimation of population dynamics and (2) the estimation of central population parameters and stages that have traditionally been elusive in demographic studies but are key to applied conservation, such as the long-term dynamics of floaters (sexually mature non-breeders), sink–source status, and dispersal processes. Using this approach, we carried out a fine-scale assessment of the long-term dynamics and demographic drivers of one long-lived Bonelli's eagle population from Western Europe (1986–2020). Our results illustrated a considerable population decline and subsequent recovery alongside multiple demographic insights scarcely documented to date in long-lived species. First, we reported a decrease and subsequent increase in floater numbers probably associated with parallel changes in the breeding population, hence contributing to the scarce empirical knowledge available about the role and dynamics of floaters. Second, we detected a change in average population functioning from a sink to a neutral contributor, thus shedding light on the flexibility and drivers of sink-source dynamics. Third, we underscored the central role of non-breeder survival for population recovery, suggesting that long-lived species conservation action should not only focus on adult or breeding populations, as is typically the case. Fourth, we quantified the magnitudes and variations of local and dispersal processes in the long term and discussed their potential implications in terms of management implementation. Overall, our study highlights the potential of spatially explicit IPMs to build more complete assessments of population dynamics, contribute to better-informed conservation action, and help fill knowledge gaps in ecological sciences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Applications
Ecological Applications 环境科学-环境科学
CiteScore
9.50
自引率
2.00%
发文量
268
审稿时长
6 months
期刊介绍: The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.
期刊最新文献
Methane and nitrous oxide fluxes from reference, restored, and disturbed estuarine wetlands in Pacific Northwest, USA Novel associations among insect herbivores and trees: Patterns of occurrence and damage on pines and eucalypts Fall and rise of a threatened raptor: Unraveling long-term population dynamics with spatially explicit integrated models Restored streams recover food web properties but with different scaling relationships when compared with natural streams Landscape composition drives winter bird assemblages in agriculture–savanna mosaics of western India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1