Surface-based versus voxel-based finite element head models: comparative analyses of strain responses.

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2025-03-11 DOI:10.1007/s10237-025-01940-z
Zhou Zhou, Xiaogai Li, Svein Kleiven
{"title":"Surface-based versus voxel-based finite element head models: comparative analyses of strain responses.","authors":"Zhou Zhou, Xiaogai Li, Svein Kleiven","doi":"10.1007/s10237-025-01940-z","DOIUrl":null,"url":null,"abstract":"<p><p>Finite element (FE) models of the human head are important injury assessment tools but developing a high-quality, hexahedral-meshed FE head model without compromising geometric accuracy is a challenging task. Important brain features, such as the cortical folds and ventricles, were captured only in a handful of FE head models that were primarily developed from two meshing techniques, i.e., surface-based meshing with conforming elements to capture the interfacial boundaries and voxel-based meshing by converting the segmented voxels into elements with and without mesh smoothing. Despite these advancements, little knowledge existed of how similar the strain responses were between surface- and voxel-based FE head models. This study uniquely addressed this gap by presenting three anatomically detailed models - a surface-based model with conforming meshes to capture the cortical folds-subarachnoid cerebrospinal fluid and brain-ventricle interfaces, and two voxel-based models (with and without mesh smoothing) - derived from the same imaging dataset. All numerical settings in the three models were exactly the same, except for the meshes. These three models were employed to simulate head impacts. The results showed that, when calculating commonly used injury metrics, including the percentile strains below the maximum (e.g., 99 percentile strain) and the volume of brain element with the strain over certain thresholds, the responses of the three models were virtually identical. Different strain patterns existed between the surface- and the voxel-based models at the interfacial boundary (e.g., sulci and gyri in the cortex, regions adjacent to the falx and tentorium) with strain differences exceeding 0.1, but remarkable similarities were noted at the non-interfacial region. The mesh smoothing procedure marginally reduced the strain discrepancies between the voxel- and surface-based model. This study yielded new quantitative insights into the general similarity in the strain responses between the surface- and voxel-based FE head models and underscored that caution should be exercised when using the strain at the interface to predict injury.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01940-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Finite element (FE) models of the human head are important injury assessment tools but developing a high-quality, hexahedral-meshed FE head model without compromising geometric accuracy is a challenging task. Important brain features, such as the cortical folds and ventricles, were captured only in a handful of FE head models that were primarily developed from two meshing techniques, i.e., surface-based meshing with conforming elements to capture the interfacial boundaries and voxel-based meshing by converting the segmented voxels into elements with and without mesh smoothing. Despite these advancements, little knowledge existed of how similar the strain responses were between surface- and voxel-based FE head models. This study uniquely addressed this gap by presenting three anatomically detailed models - a surface-based model with conforming meshes to capture the cortical folds-subarachnoid cerebrospinal fluid and brain-ventricle interfaces, and two voxel-based models (with and without mesh smoothing) - derived from the same imaging dataset. All numerical settings in the three models were exactly the same, except for the meshes. These three models were employed to simulate head impacts. The results showed that, when calculating commonly used injury metrics, including the percentile strains below the maximum (e.g., 99 percentile strain) and the volume of brain element with the strain over certain thresholds, the responses of the three models were virtually identical. Different strain patterns existed between the surface- and the voxel-based models at the interfacial boundary (e.g., sulci and gyri in the cortex, regions adjacent to the falx and tentorium) with strain differences exceeding 0.1, but remarkable similarities were noted at the non-interfacial region. The mesh smoothing procedure marginally reduced the strain discrepancies between the voxel- and surface-based model. This study yielded new quantitative insights into the general similarity in the strain responses between the surface- and voxel-based FE head models and underscored that caution should be exercised when using the strain at the interface to predict injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
Numerical simulation of voluntary respiration in a model of the whole human lower airway. Advances in computational modeling of cytokine and growth factor dynamics in bone healing: a scoping review. The order of precedence in treatment of multiple intracranial aneurysms: insights from a fluid-structure interaction study. A combined 4D flow MR imaging and fluid-structure interaction analysis of ascending thoracic aortic aneurysms. Surface-based versus voxel-based finite element head models: comparative analyses of strain responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1