Advances in computational modeling of cytokine and growth factor dynamics in bone healing: a scoping review.

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2025-03-14 DOI:10.1007/s10237-025-01938-7
Ahmad Hedayatzadeh Razavi, Nazanin Nafisi, Maria Velasquez-Hammerle, Mohammad Javad Shariyate, Mohammad Khak, Alireza Mirahmadi, Megan McNichol, Edward K Rodrogiuez, Ara Nazarian
{"title":"Advances in computational modeling of cytokine and growth factor dynamics in bone healing: a scoping review.","authors":"Ahmad Hedayatzadeh Razavi, Nazanin Nafisi, Maria Velasquez-Hammerle, Mohammad Javad Shariyate, Mohammad Khak, Alireza Mirahmadi, Megan McNichol, Edward K Rodrogiuez, Ara Nazarian","doi":"10.1007/s10237-025-01938-7","DOIUrl":null,"url":null,"abstract":"<p><p>Bone healing is a complex process regulated by intricate biological and mechanical factors and spatially varied regions over time. This scoping review synthesizes current computational models that incorporate cytokines and growth factors, examining their role in bone healing. Through a systematic analysis of 71 studies, this review identifies and categorizes the modeling methodologies used, including mathematical, finite element, agent-based, mechanobiological, pharmacobiological, and hybrid approaches. The findings highlight the predominant use of mathematical models while noting a recent shift toward more sophisticated techniques like finite element and agent-based models. Key cytokines and growth factors, such as TGF-β, RANK-RANKL-OPG, and PTH, are repeatedly used, underscoring their essential roles in regulating cellular processes. This review also analyzes parameter selection and validation strategies, identifying gaps in current practices and emphasizing the need for high-quality experimental validation to improve model reliability. Some bibliometric analyses provide insights into citation networks and keyword co-occurrence, illustrating influential studies in the field and central themes. The findings offer a foundation for future research to enhance model accuracy, aiming toward more predictive and clinically relevant models accounting for biology and mechanics in bone healing.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01938-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bone healing is a complex process regulated by intricate biological and mechanical factors and spatially varied regions over time. This scoping review synthesizes current computational models that incorporate cytokines and growth factors, examining their role in bone healing. Through a systematic analysis of 71 studies, this review identifies and categorizes the modeling methodologies used, including mathematical, finite element, agent-based, mechanobiological, pharmacobiological, and hybrid approaches. The findings highlight the predominant use of mathematical models while noting a recent shift toward more sophisticated techniques like finite element and agent-based models. Key cytokines and growth factors, such as TGF-β, RANK-RANKL-OPG, and PTH, are repeatedly used, underscoring their essential roles in regulating cellular processes. This review also analyzes parameter selection and validation strategies, identifying gaps in current practices and emphasizing the need for high-quality experimental validation to improve model reliability. Some bibliometric analyses provide insights into citation networks and keyword co-occurrence, illustrating influential studies in the field and central themes. The findings offer a foundation for future research to enhance model accuracy, aiming toward more predictive and clinically relevant models accounting for biology and mechanics in bone healing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨愈合过程中细胞因子和生长因子动态计算建模的进展:范围综述。
骨愈合是一个复杂的过程,受到错综复杂的生物和机械因素以及随时间变化的空间区域的调控。本范围综述综合了当前包含细胞因子和生长因子的计算模型,研究了它们在骨愈合中的作用。通过对 71 项研究的系统分析,本综述对所用的建模方法进行了识别和分类,包括数学、有限元、基于代理、机械生物学、药物生物学和混合方法。研究结果强调了数学模型的主要使用方法,同时也注意到最近向更复杂的技术(如有限元模型和基于代理的模型)的转变。关键的细胞因子和生长因子,如 TGF-β、RANK-RANKL-OPG 和 PTH 等被反复使用,突出了它们在调节细胞过程中的重要作用。这篇综述还分析了参数选择和验证策略,找出了当前实践中的差距,并强调了进行高质量实验验证以提高模型可靠性的必要性。一些文献计量学分析提供了对引文网络和关键词共现的见解,说明了该领域有影响力的研究和中心主题。这些研究结果为今后提高模型准确性的研究奠定了基础,旨在建立更具预测性和临床相关性的模型,以考虑骨愈合过程中的生物学和力学因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
Numerical simulation of voluntary respiration in a model of the whole human lower airway. Advances in computational modeling of cytokine and growth factor dynamics in bone healing: a scoping review. The order of precedence in treatment of multiple intracranial aneurysms: insights from a fluid-structure interaction study. A combined 4D flow MR imaging and fluid-structure interaction analysis of ascending thoracic aortic aneurysms. Surface-based versus voxel-based finite element head models: comparative analyses of strain responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1