Physiological, ionomic, transcriptomic and metabolomic analyses reveal molecular mechanisms of root adaption to salt stress in water spinach.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-03-11 DOI:10.1186/s12864-025-11409-z
Zhenqin Li, Long Cheng, Sitong Li, Guangcai Liu, Sijia Liu, Duo Xu, Rongchao Yang, Feng Feng, Junning Wang, Chao Zheng
{"title":"Physiological, ionomic, transcriptomic and metabolomic analyses reveal molecular mechanisms of root adaption to salt stress in water spinach.","authors":"Zhenqin Li, Long Cheng, Sitong Li, Guangcai Liu, Sijia Liu, Duo Xu, Rongchao Yang, Feng Feng, Junning Wang, Chao Zheng","doi":"10.1186/s12864-025-11409-z","DOIUrl":null,"url":null,"abstract":"<p><p>Water spinach (Ipomoea aquatica Forsk.) is an important leaf vegetable affected by salt stress, however, little is known about its salt adaption mechanism. Here, we integrated physiomics, ionomics, transcriptomics, and metabolomics to analyze the root adaptation response of two water spinach varieties, BG (salt-tolerant) and MF (salt-sensitive), at 150 mM NaCl. The results showed that compared with MF, BG significantly reduced the content of malondialdehyde (MDA) and H<sub>2</sub>O<sub>2</sub>, and increased catalase (CAT) activity and proline content. Ionome analysis demonstrated that BG significantly reduced Na<sup>+</sup> accumulation and increased K<sup>+</sup> level to reduce the toxicity of Na<sup>+</sup>, compared to MF. Weighted gene co-expression network analysis (WGCNA) revealed that key transcription factors such as HSFA4A, bHLH093, and IDD7, which were only up-regulated in BG. Multi-omics revealed that BG reprogrammed key pathways: starch and sucrose metabolism, as well as galactose metabolism, leading to decreased amylose production and increased sucrose and galactose levels, helping to maintain cellular osmotic balance in response to salt stress. These findings provide insight into transcriptional regulation in response to salt stress, which could advance the genetic enhancement of water spinach.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"231"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11409-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Water spinach (Ipomoea aquatica Forsk.) is an important leaf vegetable affected by salt stress, however, little is known about its salt adaption mechanism. Here, we integrated physiomics, ionomics, transcriptomics, and metabolomics to analyze the root adaptation response of two water spinach varieties, BG (salt-tolerant) and MF (salt-sensitive), at 150 mM NaCl. The results showed that compared with MF, BG significantly reduced the content of malondialdehyde (MDA) and H2O2, and increased catalase (CAT) activity and proline content. Ionome analysis demonstrated that BG significantly reduced Na+ accumulation and increased K+ level to reduce the toxicity of Na+, compared to MF. Weighted gene co-expression network analysis (WGCNA) revealed that key transcription factors such as HSFA4A, bHLH093, and IDD7, which were only up-regulated in BG. Multi-omics revealed that BG reprogrammed key pathways: starch and sucrose metabolism, as well as galactose metabolism, leading to decreased amylose production and increased sucrose and galactose levels, helping to maintain cellular osmotic balance in response to salt stress. These findings provide insight into transcriptional regulation in response to salt stress, which could advance the genetic enhancement of water spinach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis.
IF 2.4 4区 生物学Molecular BiotechnologyPub Date : 2024-07-01 DOI: 10.1007/s12033-023-00790-3
Wenjing Zhang, Chun Wei, Ling Wang
Identification of KEY lncRNAs and mRNAs Associated with Oral Squamous Cell Carcinoma Progression
IF 4 3区 生物学Current BioinformaticsPub Date : 2020-07-29 DOI: 10.2174/1573411016999200729125745
Yong Mi, Na Li, Qing Li, Yangu Shi, Congcong Zhang, Ju Li
Identification of key lncRNAs and mRNAs related intramuscular fat in pigs by WGCNA
IF 0 Research Square (Research Square)Pub Date : 2023-08-25 DOI: 10.21203/rs.3.rs-3268249/v1
Wenqiang Li, Suozhou Yang, Huixin Liu, Zhi Cao, Fei Xu, Chao Ning, Qin Zhang, Dan Wang, Hui Tang
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Metabolomics and transcriptomics analyses reveal the complex molecular mechanisms by which the hypothalamus regulates sexual development in female goats. Efficient blockLASSO for polygenic scores with applications to all of us and UK Biobank. MuPETFlow: multiple ploidy estimation tool from flow cytometry data. Genome-wide chromatin accessibility and selective signals of meat rabbits reveal key Cis-regulatory elements and variants during postnatal development of skeletal muscles in rabbits. Genome-wide identification of the AAT gene family in quinoa and analysis of its expression pattern under abiotic stresses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1