Acute and chronic pesticide exposure trigger fundamentally different molecular responses in bumble bee brains.

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2025-03-11 DOI:10.1186/s12915-025-02169-z
Alicja Witwicka, Federico López-Osorio, Andres Arce, Richard J Gill, Yannick Wurm
{"title":"Acute and chronic pesticide exposure trigger fundamentally different molecular responses in bumble bee brains.","authors":"Alicja Witwicka, Federico López-Osorio, Andres Arce, Richard J Gill, Yannick Wurm","doi":"10.1186/s12915-025-02169-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Beneficial insects, including pollinators, encounter various pesticide exposure conditions, from brief high-concentration acute exposure to continuous low-level chronic exposure. To effectively assess the environmental risks of pesticides, it is critical to understand how different exposure schemes influence their effects. Unfortunately, this knowledge remains limited. To clarify whether different exposure schemes disrupt the physiology of pollinators in a similar manner, we exposed bumble bees to acute or chronic treatments of three different pesticides: acetamiprid, clothianidin, or sulfoxaflor. Genome-wide gene expression profiling enabled us to compare the effects of these treatments on the brain in a high-resolution manner.</p><p><strong>Results: </strong>There were two main findings: First, acute and chronic exposure schemes largely affected non-overlapping sets of genes. Second, different pesticides under the same exposure scheme showed more comparable effects than the same pesticide under different exposure schemes. Each exposure scheme induced a distinct gene expression profile. Acute exposure mainly caused upregulation of genes linked to the stress response mechanisms, like peroxidase and detoxification genes, while chronic exposure predominantly affected immunity and energy metabolism.</p><p><strong>Conclusions: </strong>Our findings show that the mode of exposure is critical in determining the molecular effects of pesticides. These results signal the need for safety testing practices to better consider mode-of-exposure dependent effects and suggest that transcriptomics can support such improvements.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"72"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02169-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Beneficial insects, including pollinators, encounter various pesticide exposure conditions, from brief high-concentration acute exposure to continuous low-level chronic exposure. To effectively assess the environmental risks of pesticides, it is critical to understand how different exposure schemes influence their effects. Unfortunately, this knowledge remains limited. To clarify whether different exposure schemes disrupt the physiology of pollinators in a similar manner, we exposed bumble bees to acute or chronic treatments of three different pesticides: acetamiprid, clothianidin, or sulfoxaflor. Genome-wide gene expression profiling enabled us to compare the effects of these treatments on the brain in a high-resolution manner.

Results: There were two main findings: First, acute and chronic exposure schemes largely affected non-overlapping sets of genes. Second, different pesticides under the same exposure scheme showed more comparable effects than the same pesticide under different exposure schemes. Each exposure scheme induced a distinct gene expression profile. Acute exposure mainly caused upregulation of genes linked to the stress response mechanisms, like peroxidase and detoxification genes, while chronic exposure predominantly affected immunity and energy metabolism.

Conclusions: Our findings show that the mode of exposure is critical in determining the molecular effects of pesticides. These results signal the need for safety testing practices to better consider mode-of-exposure dependent effects and suggest that transcriptomics can support such improvements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Gfa1 (glutamine fructose-6-phosphate aminotransferase) is essential for Aspergillus fumigatus growth and virulence. Rare but specific: 5-bp composite motifs define SMAD binding in BMP signaling. A dynamic transcriptional cell atlas of testes development after birth in Hu sheep. Bradykinin's carbamylation as a mechanistic link to impaired wound healing in patients with kidney dysfunction. Correction: Phylogenomics of angiosperms based on mitochondrial genes: insights into deep node relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1