Jie Su, Yanyan Yang, Daqing Wang, Hong Su, Feifei Zhao, Chuanqiang Zhang, Min Zhang, Xiunan Li, Tingyi He, Xihe Li, Ying Tian, Biao Song, Chao Chen, Yongli Song, Guifang Cao
{"title":"A dynamic transcriptional cell atlas of testes development after birth in Hu sheep.","authors":"Jie Su, Yanyan Yang, Daqing Wang, Hong Su, Feifei Zhao, Chuanqiang Zhang, Min Zhang, Xiunan Li, Tingyi He, Xihe Li, Ying Tian, Biao Song, Chao Chen, Yongli Song, Guifang Cao","doi":"10.1186/s12915-025-02186-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Testes development is a fundamental process in sexual development and reproduction. The testes undergo dramatic structural changes during development, including the proliferation and differentiation of somatic cells such as Sertoli cells, Leydig cells, and myoid cells, as well as the maturation of spermatogonia. However, little is known about the onset of spermatogenesis and cell proliferation and maturation in the spermatogonial niche in large animals.</p><p><strong>Results: </strong>We used single-cell RNA sequencing (scRNA-seq) to profile nearly 100,000 cells from Hu sheep testes across seven developmental stages (birth, prepuberty, puberty, and adulthood). We constructed single-cell transcriptomic atlases and identified distinct spermatogonial subtypes, revealing dynamic gene expression patterns during spermatogenesis. Notably, we observed that two distinct Sertoli cell states converge into a mature population during puberty. Additionally, we identified a common prepubertal progenitor for Leydig and myoid cells, with Leydig cells transitioning through progenitor and immature stages before reaching maturity.</p><p><strong>Conclusions: </strong>Our study provides a comprehensive atlas of Hu sheep testes development, revealing key insights into the dynamic changes and regulatory mechanisms of spermatogenesis and somatic cell maturation from birth to adulthood. These findings offer new perspectives on testicular development in large mammals and support future research on reproductive biology and breeding strategies.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"78"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02186-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Testes development is a fundamental process in sexual development and reproduction. The testes undergo dramatic structural changes during development, including the proliferation and differentiation of somatic cells such as Sertoli cells, Leydig cells, and myoid cells, as well as the maturation of spermatogonia. However, little is known about the onset of spermatogenesis and cell proliferation and maturation in the spermatogonial niche in large animals.
Results: We used single-cell RNA sequencing (scRNA-seq) to profile nearly 100,000 cells from Hu sheep testes across seven developmental stages (birth, prepuberty, puberty, and adulthood). We constructed single-cell transcriptomic atlases and identified distinct spermatogonial subtypes, revealing dynamic gene expression patterns during spermatogenesis. Notably, we observed that two distinct Sertoli cell states converge into a mature population during puberty. Additionally, we identified a common prepubertal progenitor for Leydig and myoid cells, with Leydig cells transitioning through progenitor and immature stages before reaching maturity.
Conclusions: Our study provides a comprehensive atlas of Hu sheep testes development, revealing key insights into the dynamic changes and regulatory mechanisms of spermatogenesis and somatic cell maturation from birth to adulthood. These findings offer new perspectives on testicular development in large mammals and support future research on reproductive biology and breeding strategies.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.