Enhancing drug release from PEG-PLGA implants: The role of Hydrophilic Dexamethasone Phosphate in modulating release kinetics and degradation behavior

IF 4.3 3区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutical Sciences Pub Date : 2025-03-09 DOI:10.1016/j.ejps.2025.107067
Eric Lehner , Marie-Luise Trutschel , Matthias Menzel , Jonas Jacobs , Julian Kunert , Jonas Scheffler , Wolfgang H. Binder , Christian E.H. Schmelzer , Stefan K. Plontke , Arne Liebau , Karsten Mäder
{"title":"Enhancing drug release from PEG-PLGA implants: The role of Hydrophilic Dexamethasone Phosphate in modulating release kinetics and degradation behavior","authors":"Eric Lehner ,&nbsp;Marie-Luise Trutschel ,&nbsp;Matthias Menzel ,&nbsp;Jonas Jacobs ,&nbsp;Julian Kunert ,&nbsp;Jonas Scheffler ,&nbsp;Wolfgang H. Binder ,&nbsp;Christian E.H. Schmelzer ,&nbsp;Stefan K. Plontke ,&nbsp;Arne Liebau ,&nbsp;Karsten Mäder","doi":"10.1016/j.ejps.2025.107067","DOIUrl":null,"url":null,"abstract":"<div><div>Poly(lactic-co-glycolic acid) (PLGA) is a prominent biodegradable polymer used in biomedical applications, including drug delivery systems (DDS) and tissue engineering. PLGA's ability to control drug release is often hindered by nonlinear release profiles and slow initial drug release for hydrophobic drugs. This study investigates the incorporation of dexamethasone phosphate (DEXP) into polyethylene glycol–poly(lactic-co-glycolic acid) (PEG-PLGA) implants to enhance the initial release rate of dexamethasone (DEX). Implants were fabricated via hot-melt extrusion with varying DEX to DEXP ratios. X-ray diffraction (XRD) analysis confirmed that DEX remained crystalline in all formulations, whereas DEXP's crystallinity was detectable only in higher concentrations. Energy-dispersive X-ray spectroscopy (EDX) provided insights into the distribution of DEX and DEXP within the polymer matrix. Drug release studies revealed that PEG-PLGA implants accelerated initial drug release with increasing quantity of DEXP, though it also led to a shorter overall release duration. Despite these improvements, all implants exhibited a biphasic release profile. DEXP also influenced the characteristics of the polymer matrix, evidenced by increased swelling, water absorption, and mass loss. <sup>1</sup>H NMR analysis revealed a faster decrease in glycolic acid monomers in DEXP-containing implants. These findings demonstrate that DEXP enhances early drug release of DEX-loaded PEG-PLGA implants prepared by hot-melt extrusion. However, balancing initial and sustained release profiles remains challenging.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"209 ","pages":"Article 107067"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725000661","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(lactic-co-glycolic acid) (PLGA) is a prominent biodegradable polymer used in biomedical applications, including drug delivery systems (DDS) and tissue engineering. PLGA's ability to control drug release is often hindered by nonlinear release profiles and slow initial drug release for hydrophobic drugs. This study investigates the incorporation of dexamethasone phosphate (DEXP) into polyethylene glycol–poly(lactic-co-glycolic acid) (PEG-PLGA) implants to enhance the initial release rate of dexamethasone (DEX). Implants were fabricated via hot-melt extrusion with varying DEX to DEXP ratios. X-ray diffraction (XRD) analysis confirmed that DEX remained crystalline in all formulations, whereas DEXP's crystallinity was detectable only in higher concentrations. Energy-dispersive X-ray spectroscopy (EDX) provided insights into the distribution of DEX and DEXP within the polymer matrix. Drug release studies revealed that PEG-PLGA implants accelerated initial drug release with increasing quantity of DEXP, though it also led to a shorter overall release duration. Despite these improvements, all implants exhibited a biphasic release profile. DEXP also influenced the characteristics of the polymer matrix, evidenced by increased swelling, water absorption, and mass loss. 1H NMR analysis revealed a faster decrease in glycolic acid monomers in DEXP-containing implants. These findings demonstrate that DEXP enhances early drug release of DEX-loaded PEG-PLGA implants prepared by hot-melt extrusion. However, balancing initial and sustained release profiles remains challenging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
2.20%
发文量
248
审稿时长
50 days
期刊介绍: The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development. More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making. Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.
期刊最新文献
Hierarchical clustering of therapeutic proteins based on agitation-induced aggregation propensity and its relation to physicochemical parameters Direct comparison of single peak and gradient chromatographic methods for routine analysis of surfactants in biopharmaceuticals. DprE1 Inhibitors: An insight into the recent developments and synthetic approaches. Enhancing Martini 3 for protein self-interaction simulations Enhancing drug release from PEG-PLGA implants: The role of Hydrophilic Dexamethasone Phosphate in modulating release kinetics and degradation behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1