Lorenzo Carré, Francesca Natali, Giuseppe Zaccai, Vaitson Çumaku, Bruno Franzetti
{"title":"Determination of <i>in cellulo</i> proteome molecular dynamics in different halophilic Archaea.","authors":"Lorenzo Carré, Francesca Natali, Giuseppe Zaccai, Vaitson Çumaku, Bruno Franzetti","doi":"10.1098/rsif.2024.0630","DOIUrl":null,"url":null,"abstract":"<p><p>While biophysical studies have unravelled properties of specific proteins <i>in vitro</i>, characterizing globally their native state within the cell remains a challenge. In particular, protein adaptation to harsh intracellular physical and chemical conditions is poorly understood. Extremophiles, which thrive in severe environments, are good models for the study of such adaptation. Five haloarchaeal species, isolated from hypersaline environments, were used to assess correlations between intracellular salt concentrations and molecular dynamics properties. <i>In cellulo</i> protein stability was measured using nano differential scanning fluorimetry, and neutron spectrometry was used to determine molecular dynamics resilience and global flexibility. It was found that high intracellular accumulation of Mg<sup>2+</sup> and low intracellular accumulation of K<sup>+</sup> were correlated with higher stability and resilience. Sequence traits associated with mean proteome halophilicity, such as decreased hydrophobicity and increased acidity, weighted by the relative abundance of each protein, were also correlated with stability and resilience. <i>Haloferax mediterranei</i>, however, was found to be an exception as its proteome showed the highest <i>in cellulo</i> molecular stability and resilience associated with fewest sequence traits related to halophilicity, highlighting the significance of the intracellular salt environment in determining proteome biophysical properties.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 224","pages":"20240630"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0630","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While biophysical studies have unravelled properties of specific proteins in vitro, characterizing globally their native state within the cell remains a challenge. In particular, protein adaptation to harsh intracellular physical and chemical conditions is poorly understood. Extremophiles, which thrive in severe environments, are good models for the study of such adaptation. Five haloarchaeal species, isolated from hypersaline environments, were used to assess correlations between intracellular salt concentrations and molecular dynamics properties. In cellulo protein stability was measured using nano differential scanning fluorimetry, and neutron spectrometry was used to determine molecular dynamics resilience and global flexibility. It was found that high intracellular accumulation of Mg2+ and low intracellular accumulation of K+ were correlated with higher stability and resilience. Sequence traits associated with mean proteome halophilicity, such as decreased hydrophobicity and increased acidity, weighted by the relative abundance of each protein, were also correlated with stability and resilience. Haloferax mediterranei, however, was found to be an exception as its proteome showed the highest in cellulo molecular stability and resilience associated with fewest sequence traits related to halophilicity, highlighting the significance of the intracellular salt environment in determining proteome biophysical properties.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.