Tribological metamaterial: how feathers reduce drag and friction through hidden energy dissipation structures.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of The Royal Society Interface Pub Date : 2025-03-01 Epub Date: 2025-03-12 DOI:10.1098/rsif.2024.0751
Qingrui Song, Tianci Chen, Wei Sun, Mingjian Huang, Yuhang Guo, Yunlong Jiao, Kun Liu, Jiaxin Ye
{"title":"Tribological metamaterial: how feathers reduce drag and friction through hidden energy dissipation structures.","authors":"Qingrui Song, Tianci Chen, Wei Sun, Mingjian Huang, Yuhang Guo, Yunlong Jiao, Kun Liu, Jiaxin Ye","doi":"10.1098/rsif.2024.0751","DOIUrl":null,"url":null,"abstract":"<p><p>The lateral moving resistance of a liquid droplet on a solid surface generally increases with velocity and is dominated by the non-viscous wetting line friction. Many superhydrophobic man-made and biological surfaces have minimal, nevertheless speed-sensitive, water droplet friction, limiting their potential to reduce drag at high speeds in natural situations. Using an <i>in situ</i> surface force apparatus, we demonstrated low and remarkably speed-insensitive (over 300-fold) water bridge sliding friction on a goose feather vane. Detailed analyses suggest a dominant, hidden energy dissipation channel probably related to the deformation and elastic recovery of feather's characteristic metamaterial-like structure, which also results in feather's speed insensitive (from 0.1 to 1 mm s<sup>-1</sup>) ultra-low dry sliding friction coefficient observed in this study (approx. 0.07). The new insights gained have the potential to motivate novel approaches to the design of all-weather and speed-insensitive low-friction surfaces with practical applications in aviation and lubrication technology.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 224","pages":"20240751"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0751","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The lateral moving resistance of a liquid droplet on a solid surface generally increases with velocity and is dominated by the non-viscous wetting line friction. Many superhydrophobic man-made and biological surfaces have minimal, nevertheless speed-sensitive, water droplet friction, limiting their potential to reduce drag at high speeds in natural situations. Using an in situ surface force apparatus, we demonstrated low and remarkably speed-insensitive (over 300-fold) water bridge sliding friction on a goose feather vane. Detailed analyses suggest a dominant, hidden energy dissipation channel probably related to the deformation and elastic recovery of feather's characteristic metamaterial-like structure, which also results in feather's speed insensitive (from 0.1 to 1 mm s-1) ultra-low dry sliding friction coefficient observed in this study (approx. 0.07). The new insights gained have the potential to motivate novel approaches to the design of all-weather and speed-insensitive low-friction surfaces with practical applications in aviation and lubrication technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
期刊最新文献
A predictive surrogate model of blood haemodynamics for patient-specific carotid artery stenosis. A mathematical model to predict network growth in Physarum polycephalum as a function of extracellular matrix viscosity, measured by a novel viscometer. Nanomechanics of cell-derived matrices as a functional read-out in collagen VI-related congenital muscular dystrophies. A comparison of electrospinning and pressurized gyration: Production of empagliflozin-loaded polylactic acid/polycaprolactone fibrous patches. Determination of in cellulo proteome molecular dynamics in different halophilic Archaea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1