Mingbo Yang, Yan Zhang, Xueqing Zhao, Ge Gao, Yucheng Shi, Yifan Wang, Mengyue Duan, Ziye Guo, Xiaodong Ma, Ting Ma, Guoqiang Li
{"title":"Bioremediation of non-point hydrogen sulfide emissions using bacterial cellulose/activated carbon membrane.","authors":"Mingbo Yang, Yan Zhang, Xueqing Zhao, Ge Gao, Yucheng Shi, Yifan Wang, Mengyue Duan, Ziye Guo, Xiaodong Ma, Ting Ma, Guoqiang Li","doi":"10.1186/s12934-025-02686-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hydrogen sulfide (H<sub>2</sub>S) gas, characterized by its low odor threshold and toxicity, poses significant challenges in non-point source odor management. Traditional biotechnologies are effective in removing malodorous gases from point sources but they are limited for non-point source odor control.</p><p><strong>Results: </strong>In this study, the sqr and pdo genes from Cupriavidus pinatubonensis JMP134 were introduced into the bacterial cellulose-producing strain Kosakonia oryzendophytica FY-07. This genetic modification enhanced the strain's sulfur oxidation capacity, which increased over time, with an average transformation capacity of approximately 275 mg·L<sup>- 1</sup>·day<sup>- 1</sup>. By incorporating 1% activated carbon, an efficient, naturally degradable bio-composite membrane was developed, achieving a maximum H<sub>2</sub>S adsorption capacity of 7.3 g·m<sup>- 3</sup>·day<sup>- 1</sup>. FY-07 remained stable in soil and improved the microbial community for H<sub>2</sub>S treatment.</p><p><strong>Conclusion: </strong>The resulting bio-composite membrane is environment-friendly and efficient, making it suitable for emergency odor control in landfills. This study offers recommendations for using membrane materials in managing non-point hydrogen sulfide emissions.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"63"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02686-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hydrogen sulfide (H2S) gas, characterized by its low odor threshold and toxicity, poses significant challenges in non-point source odor management. Traditional biotechnologies are effective in removing malodorous gases from point sources but they are limited for non-point source odor control.
Results: In this study, the sqr and pdo genes from Cupriavidus pinatubonensis JMP134 were introduced into the bacterial cellulose-producing strain Kosakonia oryzendophytica FY-07. This genetic modification enhanced the strain's sulfur oxidation capacity, which increased over time, with an average transformation capacity of approximately 275 mg·L- 1·day- 1. By incorporating 1% activated carbon, an efficient, naturally degradable bio-composite membrane was developed, achieving a maximum H2S adsorption capacity of 7.3 g·m- 3·day- 1. FY-07 remained stable in soil and improved the microbial community for H2S treatment.
Conclusion: The resulting bio-composite membrane is environment-friendly and efficient, making it suitable for emergency odor control in landfills. This study offers recommendations for using membrane materials in managing non-point hydrogen sulfide emissions.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems