White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: a longitudinal multimodal imaging study.

IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Molecular Autism Pub Date : 2025-03-11 DOI:10.1186/s13229-025-00646-4
Guannan Shen, Heather L Green, Marybeth McNamee, Rose E Franzen, Marissa DiPiero, Jeffrey I Berman, Matthew Ku, Luke Bloy, Song Liu, Megan Airey, Sophia Goldin, Lisa Blaskey, Emily S Kuschner, Mina Kim, Kimberly Konka, Gregory A Miller, J Christopher Edgar
{"title":"White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: a longitudinal multimodal imaging study.","authors":"Guannan Shen, Heather L Green, Marybeth McNamee, Rose E Franzen, Marissa DiPiero, Jeffrey I Berman, Matthew Ku, Luke Bloy, Song Liu, Megan Airey, Sophia Goldin, Lisa Blaskey, Emily S Kuschner, Mina Kim, Kimberly Konka, Gregory A Miller, J Christopher Edgar","doi":"10.1186/s13229-025-00646-4","DOIUrl":null,"url":null,"abstract":"<p><p>We and others have demonstrated the resting-state (RS) peak alpha frequency (PAF) as a potential clinical marker for young children with autism spectrum disorder (ASD), with previous studies observing a higher PAF in school-age children with ASD versus typically developing (TD) children, as well as an association between the RS PAF and measures of processing speed in TD but not ASD. The brain mechanisms associated with these findings are unknown. A few studies have found that in children more mature optic radiation white matter is associated with a higher PAF. Other studies have reported white matter and neural activity associations in TD but not ASD. The present study hypothesized that group differences in the RS PAF are due, in part, to group differences in optic radiation white matter and PAF associations. The maturation of the RS PAF (measured using magnetoencephalography(MEG)), optic radiation white matter (measured using diffusion tensor imaging(DTI)), and associations with processing speed were assessed in a longitudinal cohort of TD and ASD children. Time 1 MEG and DTI measures were obtained at 6-8 years old (59TD and 56ASD) with follow-up brain measures collected ~ 1.5 and ~ 3 years later. The parietal-occipital PAF increased with age in both groups by 0.13 Hz/year, with a main effect of group showing the expected higher PAF in ASD than TD (an average of 0.26 Hz across the 3 time points). Across age, the RS PAF predicted processing speed in TD but not ASD. Finally, more mature optic radiation white matter measures (FA, RD, MD, AD) were associated with a higher PAF in both groups. Present findings provide additional evidence supporting the use of the RS PAF as a brain marker in children with ASD 6-10 years old, and replicate findings of an association between the RS PAF and processing speed in TD but not ASD. The hypothesis that the RS PAF group differences (with ASD leading TD by about 2 years) would be explained by group differences in optic radiation white matter was not supported, with brain structure-function associations indicating that more mature optic radiation white matter is associated with a higher RS PAF in both groups.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"16 1","pages":"19"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-025-00646-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

We and others have demonstrated the resting-state (RS) peak alpha frequency (PAF) as a potential clinical marker for young children with autism spectrum disorder (ASD), with previous studies observing a higher PAF in school-age children with ASD versus typically developing (TD) children, as well as an association between the RS PAF and measures of processing speed in TD but not ASD. The brain mechanisms associated with these findings are unknown. A few studies have found that in children more mature optic radiation white matter is associated with a higher PAF. Other studies have reported white matter and neural activity associations in TD but not ASD. The present study hypothesized that group differences in the RS PAF are due, in part, to group differences in optic radiation white matter and PAF associations. The maturation of the RS PAF (measured using magnetoencephalography(MEG)), optic radiation white matter (measured using diffusion tensor imaging(DTI)), and associations with processing speed were assessed in a longitudinal cohort of TD and ASD children. Time 1 MEG and DTI measures were obtained at 6-8 years old (59TD and 56ASD) with follow-up brain measures collected ~ 1.5 and ~ 3 years later. The parietal-occipital PAF increased with age in both groups by 0.13 Hz/year, with a main effect of group showing the expected higher PAF in ASD than TD (an average of 0.26 Hz across the 3 time points). Across age, the RS PAF predicted processing speed in TD but not ASD. Finally, more mature optic radiation white matter measures (FA, RD, MD, AD) were associated with a higher PAF in both groups. Present findings provide additional evidence supporting the use of the RS PAF as a brain marker in children with ASD 6-10 years old, and replicate findings of an association between the RS PAF and processing speed in TD but not ASD. The hypothesis that the RS PAF group differences (with ASD leading TD by about 2 years) would be explained by group differences in optic radiation white matter was not supported, with brain structure-function associations indicating that more mature optic radiation white matter is associated with a higher RS PAF in both groups.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Autism
Molecular Autism GENETICS & HEREDITY-NEUROSCIENCES
CiteScore
12.10
自引率
1.60%
发文量
44
审稿时长
17 weeks
期刊介绍: Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.
期刊最新文献
Somatostatin-expressing interneurons of prefrontal cortex modulate social deficits in the Magel2 mouse model of autism. White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: a longitudinal multimodal imaging study. Postnatal downregulation of Fmr1 in microglia promotes microglial reactivity and causes behavioural alterations in female mice. Transcallosal white matter and cortical gray matter variations in autistic adults aged 30-73 years. Do autistic individuals show atypical performance in probabilistic learning? A comparison of cue-number, predictive strength, and prediction error.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1