Characterization of Three Resistance-Breaking Isolates of Sugarcane Mosaic Virus from Rwanda and Implications for Maize Lethal Necrosis.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2025-03-12 DOI:10.1094/PHYTO-07-24-0227-R
Jennifer R Wilson, Kristen J Willie, Lucy R Stewart, Margaret G Redinbaugh, Erik W Ohlson
{"title":"Characterization of Three Resistance-Breaking Isolates of Sugarcane Mosaic Virus from Rwanda and Implications for Maize Lethal Necrosis.","authors":"Jennifer R Wilson, Kristen J Willie, Lucy R Stewart, Margaret G Redinbaugh, Erik W Ohlson","doi":"10.1094/PHYTO-07-24-0227-R","DOIUrl":null,"url":null,"abstract":"<p><p>Maize lethal necrosis (MLN) is a devastating disease of maize caused by synergy between two viruses: maize chlorotic mottle virus (MCMV) and a potyvirus, often sugarcane mosaic virus (SCMV). Throughout the 2010s, severe MLN outbreaks occurred in East Africa including Kenya, Rwanda, and Ethiopia. Previous studies have shown extensive sequence diversity among SCMV isolates collected from this region. In this study, we assessed how this diversity may alter virulence by screening a panel of maize near isogenic lines containing different combinations of major potyvirus resistance loci with diverse SCMV isolates collected from Rwanda. We discovered that the three isolates tested overcame all three potyvirus resistance loci even when stacked, including one isolate that asymptomatically infected all resistant lines tested. To understand how SCMV virulence may contribute to MLN, each SCMV isolate was co-inoculated with MCMV on a panel of SCMV and MCMV resistant maize lines. No significant differences in MLN severity were observed for the isolates from Rwanda compared to the reference SCMV isolates, indicating that increased virulence in SCMV single infection did not necessarily correlate with increased MLN severity in co-infection with MCMV. At least two potyvirus resistance loci were needed to reduce MLN severity and combining SCMV and MCMV resistance was most effective. Remarkably, in some cases, co-infection with MCMV facilitated SCMV infection of potyvirus resistant lines that SCMV could not infect alone. These results underscore the challenges of developing durable MLN resistance and highlight the importance of incorporating strong, multigenic potyvirus resistance into MLN resistance breeding programs.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-07-24-0227-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Maize lethal necrosis (MLN) is a devastating disease of maize caused by synergy between two viruses: maize chlorotic mottle virus (MCMV) and a potyvirus, often sugarcane mosaic virus (SCMV). Throughout the 2010s, severe MLN outbreaks occurred in East Africa including Kenya, Rwanda, and Ethiopia. Previous studies have shown extensive sequence diversity among SCMV isolates collected from this region. In this study, we assessed how this diversity may alter virulence by screening a panel of maize near isogenic lines containing different combinations of major potyvirus resistance loci with diverse SCMV isolates collected from Rwanda. We discovered that the three isolates tested overcame all three potyvirus resistance loci even when stacked, including one isolate that asymptomatically infected all resistant lines tested. To understand how SCMV virulence may contribute to MLN, each SCMV isolate was co-inoculated with MCMV on a panel of SCMV and MCMV resistant maize lines. No significant differences in MLN severity were observed for the isolates from Rwanda compared to the reference SCMV isolates, indicating that increased virulence in SCMV single infection did not necessarily correlate with increased MLN severity in co-infection with MCMV. At least two potyvirus resistance loci were needed to reduce MLN severity and combining SCMV and MCMV resistance was most effective. Remarkably, in some cases, co-infection with MCMV facilitated SCMV infection of potyvirus resistant lines that SCMV could not infect alone. These results underscore the challenges of developing durable MLN resistance and highlight the importance of incorporating strong, multigenic potyvirus resistance into MLN resistance breeding programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Effect of Weather Variables on the Inoculum of Diaporthe amygdali Causal Agent of Twig Canker and Shoot Blight in Almond Orchards. Novel Non-Destructive Detection Methods for Bretziella fagacearum in Northern Red Oak and Chestnut. Preserving the Biologically Coherent Generic Concept of Phytophthora, 'Plant Destroyer'. Characterization of Three Resistance-Breaking Isolates of Sugarcane Mosaic Virus from Rwanda and Implications for Maize Lethal Necrosis. Dual-Activity Peptides Act as Bactericides Against Xanthomonas citri subsp. citri In Vitro and Protect Sweet Orange from Infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1