CRSP8-driven fatty acid metabolism reprogramming enhances hepatocellular carcinoma progression by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling.

IF 11.4 1区 医学 Q1 ONCOLOGY Journal of Experimental & Clinical Cancer Research Pub Date : 2025-03-11 DOI:10.1186/s13046-025-03329-3
Yuxi Lin, Zhixing Liang, Zhiyan Weng, Xiaofang Liu, Feng Zhang, Yutian Chong
{"title":"CRSP8-driven fatty acid metabolism reprogramming enhances hepatocellular carcinoma progression by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling.","authors":"Yuxi Lin, Zhixing Liang, Zhiyan Weng, Xiaofang Liu, Feng Zhang, Yutian Chong","doi":"10.1186/s13046-025-03329-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In-depth exploration into the dysregulation of lipid metabolism in hepatocellular carcinoma (HCC) has contributed to the development of advanced antitumor strategies. CRSP8 is a critical component of mediator multiprotein complex involved in transcriptional recruiting. However, the regulatory mechanisms of CRSP8 on fatty acid metabolism reprogramming and HCC progression remain unclear.</p><p><strong>Methods: </strong>In-silico/house dataset analysis, lipid droplets (LDs) formation, HCC mouse models and targeted lipidomic analysis were performed to determine the function of CRSP8 on regulating lipid metabolism in HCC. The subcellular colocalization and live cell imaging of LDs, transmission electron microscopy, co-immunoprecipitation and luciferase reporter assay were employed to investigate their potential mechanism.</p><p><strong>Results: </strong>CRSP8 was identified as a highly expressed oncogene essential for the proliferation and aggressiveness of HCC in vitro and in vivo. The tumor promotion of CRSP8 was accompanied by LDs accumulation and increased de novo fatty acids (FAs) synthesis. Moreover, CRSP8 diminished the colocalization between LC3 and LDs to impair lipophagy in a nuclear-localized PPARα-dependent manner, which decreased the mobilization of FAs from LDs degradation and hindered mitochondrial fatty acid oxidation. Mechanistically, the small ras family GTPase RAN was transcriptionally activated by CRSP8, leading to the reinforcement of RAN/CRM1-mediated nuclear export. CRSP8-induced enhanced formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer orchestrated cytoplasmic translocation of PPARα, attenuated nPPARα-mediated lipophagy and fatty acid catabolism, subsequently exacerbated HCC progression. In CRSP8-enriched HCC, lipid synthesis inhibitor Orlistat effectively reshaped the immunosuppressive tumor microenvironment (TME) and improved the efficacy of anti-PD-L1 therapy in vivo.</p><p><strong>Conclusion: </strong>Our study establishes that CRSP8-driven fatty acid metabolism reprogramming facilitates HCC progression via the RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer and impaired lipophagy-derived catabolism. Targeting the energy supply sourced from lipids could represent a promising therapeutic strategy for treating CRSP8-sufficient HCC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"93"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03329-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In-depth exploration into the dysregulation of lipid metabolism in hepatocellular carcinoma (HCC) has contributed to the development of advanced antitumor strategies. CRSP8 is a critical component of mediator multiprotein complex involved in transcriptional recruiting. However, the regulatory mechanisms of CRSP8 on fatty acid metabolism reprogramming and HCC progression remain unclear.

Methods: In-silico/house dataset analysis, lipid droplets (LDs) formation, HCC mouse models and targeted lipidomic analysis were performed to determine the function of CRSP8 on regulating lipid metabolism in HCC. The subcellular colocalization and live cell imaging of LDs, transmission electron microscopy, co-immunoprecipitation and luciferase reporter assay were employed to investigate their potential mechanism.

Results: CRSP8 was identified as a highly expressed oncogene essential for the proliferation and aggressiveness of HCC in vitro and in vivo. The tumor promotion of CRSP8 was accompanied by LDs accumulation and increased de novo fatty acids (FAs) synthesis. Moreover, CRSP8 diminished the colocalization between LC3 and LDs to impair lipophagy in a nuclear-localized PPARα-dependent manner, which decreased the mobilization of FAs from LDs degradation and hindered mitochondrial fatty acid oxidation. Mechanistically, the small ras family GTPase RAN was transcriptionally activated by CRSP8, leading to the reinforcement of RAN/CRM1-mediated nuclear export. CRSP8-induced enhanced formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer orchestrated cytoplasmic translocation of PPARα, attenuated nPPARα-mediated lipophagy and fatty acid catabolism, subsequently exacerbated HCC progression. In CRSP8-enriched HCC, lipid synthesis inhibitor Orlistat effectively reshaped the immunosuppressive tumor microenvironment (TME) and improved the efficacy of anti-PD-L1 therapy in vivo.

Conclusion: Our study establishes that CRSP8-driven fatty acid metabolism reprogramming facilitates HCC progression via the RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer and impaired lipophagy-derived catabolism. Targeting the energy supply sourced from lipids could represent a promising therapeutic strategy for treating CRSP8-sufficient HCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
期刊最新文献
PHGDH activation fuels glioblastoma progression and radioresistance via serine synthesis pathway. Are monocytes a preferable option to develop myeloid cell-based therapies for solid tumors? miR-1297 is frequently downmodulated in flat epithelial atypia of the breast and promotes mammary neoplastic transformation via EphrinA2 regulation. Viral expression of NE/PPE enhances anti-colorectal cancer efficacy of oncolytic adenovirus by promoting TAM M1 polarization to reverse insufficient effector memory/effector CD8+ T cell infiltration. CRSP8-driven fatty acid metabolism reprogramming enhances hepatocellular carcinoma progression by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1