Gang Xu, Bo An, Ruqiong Wang, Bo Pan, Huiting Hao, Xingmei Ren, Zihan Jing, Weitong Gao, Yajie Li, Yan Jin, Enguang Lin, Lihua Shang, Dexin Jia, Yan Yu
{"title":"RBM10 deficiency promotes brain metastasis by modulating sphingolipid metabolism in a BBB model of EGFR mutant lung adenocarcinoma.","authors":"Gang Xu, Bo An, Ruqiong Wang, Bo Pan, Huiting Hao, Xingmei Ren, Zihan Jing, Weitong Gao, Yajie Li, Yan Jin, Enguang Lin, Lihua Shang, Dexin Jia, Yan Yu","doi":"10.1186/s13046-025-03347-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain metastasis significantly contributes to the failure of targeted therapy in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD). Reduced expression of RNA-binding motif protein 10 (RBM10) is associated with brain metastasis in these patients. However, the mechanism by which RBM10 affects brain metastasis in EGFR-mutated LUAD remains unclear.</p><p><strong>Methods: </strong>An in vitro blood-brain barrier (BBB) model and brain metastasis-prone cell lines (BrM3) were established to confirm the brain metastatic potential of tumor cells following RBM10 knockdown. The roles of RBM10 and galactosylceramidase (GALC) in LUAD brain metastases were analyzed using cellular phenotypic assays and molecular biology techniques, including the combined analysis of Nanopore sequencing and CLIP-seq, minigene assays, and others.</p><p><strong>Results: </strong>This study demonstrates that RBM10 plays a vital role in inhibiting brain metastasis from EGFR-mutated LUAD by modulating sphingolipid metabolism. When RBM10 expression is low, GALC enters the nucleus to function. RBM10 deficiency inhibits exon skipping during GALC splicing, leading to upregulated GALC expression and increased sphingosine 1-phosphate (S1P) synthesis. S1P enhances BBB permeability, thereby promoting brain metastasis. Additionally, animal experiments show that the targeted agents Fingolimod (an S1P inhibitor) and RU-SKI-43 (a potential drug for RBM10 mutation) suppress the growth of brain metastasis.</p><p><strong>Conclusion: </strong>This study offers insights into the potential mechanisms of brain metastasis in LUAD and suggests a possible therapeutic target for further investigation.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"95"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895392/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03347-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Brain metastasis significantly contributes to the failure of targeted therapy in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD). Reduced expression of RNA-binding motif protein 10 (RBM10) is associated with brain metastasis in these patients. However, the mechanism by which RBM10 affects brain metastasis in EGFR-mutated LUAD remains unclear.
Methods: An in vitro blood-brain barrier (BBB) model and brain metastasis-prone cell lines (BrM3) were established to confirm the brain metastatic potential of tumor cells following RBM10 knockdown. The roles of RBM10 and galactosylceramidase (GALC) in LUAD brain metastases were analyzed using cellular phenotypic assays and molecular biology techniques, including the combined analysis of Nanopore sequencing and CLIP-seq, minigene assays, and others.
Results: This study demonstrates that RBM10 plays a vital role in inhibiting brain metastasis from EGFR-mutated LUAD by modulating sphingolipid metabolism. When RBM10 expression is low, GALC enters the nucleus to function. RBM10 deficiency inhibits exon skipping during GALC splicing, leading to upregulated GALC expression and increased sphingosine 1-phosphate (S1P) synthesis. S1P enhances BBB permeability, thereby promoting brain metastasis. Additionally, animal experiments show that the targeted agents Fingolimod (an S1P inhibitor) and RU-SKI-43 (a potential drug for RBM10 mutation) suppress the growth of brain metastasis.
Conclusion: This study offers insights into the potential mechanisms of brain metastasis in LUAD and suggests a possible therapeutic target for further investigation.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.