Xiaoxue Ye , Junchao Xing , Xiangru Tao , Yan Yan , Yu Li , Zhengnan Xie , Jinghao Yang , Liwang Zeng , Yu Wang , Meiying Li , Ming Wang , Naifang Fu , Zhongqing Wan , Hua Kong , Jianqiu Ye , Wei Hu
{"title":"Comparative transcriptome analysis provides insights into ABA alleviating postharvest physiological deterioration of cassava","authors":"Xiaoxue Ye , Junchao Xing , Xiangru Tao , Yan Yan , Yu Li , Zhengnan Xie , Jinghao Yang , Liwang Zeng , Yu Wang , Meiying Li , Ming Wang , Naifang Fu , Zhongqing Wan , Hua Kong , Jianqiu Ye , Wei Hu","doi":"10.1016/j.plaphy.2025.109773","DOIUrl":null,"url":null,"abstract":"<div><div>Cassava, a staple crop in tropical regions, suffers from rapid postharvest physiological deterioration (PPD), limiting its shelf life. Although abscisic acid (ABA) has shown potential in alleviating PPD, the underlying regulatory pathways remain largely unexplored. In this study, physiological assays demonstrated that exogenous ABA alleviated PPD in cassava by decreasing H<sub>2</sub>O<sub>2</sub> content. Temporal-resolution transcriptome analyses identified gene expression changes in cassava tuberous roots during PPD, with 1,338, 2,718, and 5543 genes differentially expressed after 6, 12, and 48 h of treatment, respectively. GO enrichment analysis revealed that ABA-induced DEGs exhibited functions such as response to oxygen radical, lignin metabolic process, and positive regulation of signal transduction. Co-expression network analysis identified three significant gene modules comprising 167 transcription factors (TFs) from 28 families, with 17 TFs predicted to regulate six key antioxidant enzyme genes through corresponding promoter motifs. The upregulated expression of these genes was subsequently validated by quantitative real-time PCR (qRT-PCR). Furthermore, yeast one-hybrid (Y1H) and dual-luciferase assays provided direct evidences that MeMYB114 and MeHAT22 regulate the expression of <em>MePOD10</em>, while MeERF110, MeWRKY057, and MeHAT22 were shown to activate <em>MePOD18</em> expression. These findings indicate that MeMYB114/MeHAT22/MeERF110/MeWRKY057-MePOD pathway is a crucial component involved in ABA-regulated PPD alleviation in cassava.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109773"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava, a staple crop in tropical regions, suffers from rapid postharvest physiological deterioration (PPD), limiting its shelf life. Although abscisic acid (ABA) has shown potential in alleviating PPD, the underlying regulatory pathways remain largely unexplored. In this study, physiological assays demonstrated that exogenous ABA alleviated PPD in cassava by decreasing H2O2 content. Temporal-resolution transcriptome analyses identified gene expression changes in cassava tuberous roots during PPD, with 1,338, 2,718, and 5543 genes differentially expressed after 6, 12, and 48 h of treatment, respectively. GO enrichment analysis revealed that ABA-induced DEGs exhibited functions such as response to oxygen radical, lignin metabolic process, and positive regulation of signal transduction. Co-expression network analysis identified three significant gene modules comprising 167 transcription factors (TFs) from 28 families, with 17 TFs predicted to regulate six key antioxidant enzyme genes through corresponding promoter motifs. The upregulated expression of these genes was subsequently validated by quantitative real-time PCR (qRT-PCR). Furthermore, yeast one-hybrid (Y1H) and dual-luciferase assays provided direct evidences that MeMYB114 and MeHAT22 regulate the expression of MePOD10, while MeERF110, MeWRKY057, and MeHAT22 were shown to activate MePOD18 expression. These findings indicate that MeMYB114/MeHAT22/MeERF110/MeWRKY057-MePOD pathway is a crucial component involved in ABA-regulated PPD alleviation in cassava.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.