Operando analysis of dynamic structural changes on Rh nanoparticle surfaces during catalytic reduction of NO using an environmental high-voltage electron microscope–quadrupole mass spectrometer

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-03-12 DOI:10.1016/j.nantod.2025.102707
Long-Shu Tang , Hiromochi Tanaka , Shigeo Arai , Tetsuo Higuchi , Shunsuke Muto
{"title":"Operando analysis of dynamic structural changes on Rh nanoparticle surfaces during catalytic reduction of NO using an environmental high-voltage electron microscope–quadrupole mass spectrometer","authors":"Long-Shu Tang ,&nbsp;Hiromochi Tanaka ,&nbsp;Shigeo Arai ,&nbsp;Tetsuo Higuchi ,&nbsp;Shunsuke Muto","doi":"10.1016/j.nantod.2025.102707","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional characterization techniques such as transmission electron microscopy (TEM) cannot visualize the subtle structural changes in Rh nanoparticles during the reduction of NO to N<sub>2</sub> on their surface. Hence, in this study, we used an environmental reaction science high-voltage electron microscope equipped with a quadrupole mass spectrometer (QMS) system to conduct <em>operando</em> atomic-scale analysis of the NO reduction process on Rh nanoparticles supported on ZrO<sub>2</sub>. This innovative setup enabled us to observe dynamic surface structural changes while simultaneously monitoring the production of N<sub>2</sub> and consumption of NO under relevant reaction conditions. High-resolution TEM observations and kinetic calculations based on QMS data confirmed the presence of a pseudocyclic transitional state between Rh metallic and RhO<sub>2</sub> within an unstable oxide monolayer on the surface of the Rh nanoparticles, which is a hitherto undocumented phenomenon. A comparison of experimental data with the corresponding simulated images revealed plausible catalytic mechanisms for the reduction of NO to N<sub>2</sub> at three different temperature ranges (200–500, 500–600, and 600–700 °C). At low temperatures, the reaction primarily occurs on a thin RhO<sub>2</sub> film formed on the nanoparticle surface, which defies the longstanding consensus that the reduction of NO occurs on Rh metal sites. Our methodology enabled the direct observation of transient surface states and revealed their ability to dictate the overall reaction dynamics. The findings of this study provide insights into surface catalytic reactions on nanoparticles under practical conditions as well as can guide future studies on catalytic mechanisms.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102707"},"PeriodicalIF":13.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000799","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional characterization techniques such as transmission electron microscopy (TEM) cannot visualize the subtle structural changes in Rh nanoparticles during the reduction of NO to N2 on their surface. Hence, in this study, we used an environmental reaction science high-voltage electron microscope equipped with a quadrupole mass spectrometer (QMS) system to conduct operando atomic-scale analysis of the NO reduction process on Rh nanoparticles supported on ZrO2. This innovative setup enabled us to observe dynamic surface structural changes while simultaneously monitoring the production of N2 and consumption of NO under relevant reaction conditions. High-resolution TEM observations and kinetic calculations based on QMS data confirmed the presence of a pseudocyclic transitional state between Rh metallic and RhO2 within an unstable oxide monolayer on the surface of the Rh nanoparticles, which is a hitherto undocumented phenomenon. A comparison of experimental data with the corresponding simulated images revealed plausible catalytic mechanisms for the reduction of NO to N2 at three different temperature ranges (200–500, 500–600, and 600–700 °C). At low temperatures, the reaction primarily occurs on a thin RhO2 film formed on the nanoparticle surface, which defies the longstanding consensus that the reduction of NO occurs on Rh metal sites. Our methodology enabled the direct observation of transient surface states and revealed their ability to dictate the overall reaction dynamics. The findings of this study provide insights into surface catalytic reactions on nanoparticles under practical conditions as well as can guide future studies on catalytic mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Chiral helical peptide nanomaterials: Construction strategies and applications Operando analysis of dynamic structural changes on Rh nanoparticle surfaces during catalytic reduction of NO using an environmental high-voltage electron microscope–quadrupole mass spectrometer Utilizing oxygen vacancies in cerium oxide to narrow the gap between d and f band centers for efficient alkaline water oxidation Polypeptide nanomicelles co-deliver PLK1 and BCL-2/xL inhibitors for synergetic therapy of brain tumor Plasmonic alloys enhance metabolic fingerprints for rapid diagnosis and classification of myocardial infarction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1