An Li , Qingchun Chen , Changqing Teng , Jianjun Mao , Xiaoyong Wu , Zhongqiang Fang , Xianggang Kong , Lu Wu , Jun Tang
{"title":"Hot deformation induced microstructural evolution in Fe14Cr ODS alloy manufactured by selective laser melting","authors":"An Li , Qingchun Chen , Changqing Teng , Jianjun Mao , Xiaoyong Wu , Zhongqiang Fang , Xianggang Kong , Lu Wu , Jun Tang","doi":"10.1016/j.intermet.2025.108736","DOIUrl":null,"url":null,"abstract":"<div><div>Hot working, as an important post-treatment process in additive manufacturing (AM), can be used to reduce solidification defects, property anisotropy, grain refinement, and improve the applicability of AM technology. In this work, hot deformation tests were conducted on the preformed Fe14Cr oxide dispersion strengthened (ODS) parts, fabricated by selective laser melting (SLM), on the Gleeble-3800 simulator at temperatures ranging from 850 °C to 1150 °C. The microstructure evolution before and after deformation, the effects of deformation temperature on microstructure, and the stability of nanoparticles were analyzed. The results indicate that friction-induced stress distribution during hot compressive deformation leads to microstructural heterogeneity. The increase of deformation temperature promotes dynamic recrystallization (DRX) and reduces the nonuniform deformation. The relative position of oxide nanoparticles with respect to grain boundaries is primarily determined by grain migration and dissolution precipitation during hot deformation. The pinning effect of solute elements on crystal defects can inhibit dynamic recovery during high-temperature plastic deformation, thereby promoting recrystallization.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"181 ","pages":"Article 108736"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525001013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hot working, as an important post-treatment process in additive manufacturing (AM), can be used to reduce solidification defects, property anisotropy, grain refinement, and improve the applicability of AM technology. In this work, hot deformation tests were conducted on the preformed Fe14Cr oxide dispersion strengthened (ODS) parts, fabricated by selective laser melting (SLM), on the Gleeble-3800 simulator at temperatures ranging from 850 °C to 1150 °C. The microstructure evolution before and after deformation, the effects of deformation temperature on microstructure, and the stability of nanoparticles were analyzed. The results indicate that friction-induced stress distribution during hot compressive deformation leads to microstructural heterogeneity. The increase of deformation temperature promotes dynamic recrystallization (DRX) and reduces the nonuniform deformation. The relative position of oxide nanoparticles with respect to grain boundaries is primarily determined by grain migration and dissolution precipitation during hot deformation. The pinning effect of solute elements on crystal defects can inhibit dynamic recovery during high-temperature plastic deformation, thereby promoting recrystallization.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.