A comparative study for molecular insight on riparins (I–III) by quantum chemical, spectroscopic, and molecular docking methods

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Liquids Pub Date : 2025-03-08 DOI:10.1016/j.molliq.2025.127314
Tirth Raj Paneru , Bhawani Datt Joshi , Poonam Tandon , Laura Maria Teodorio Vidal , Alejandro Pedro Ayala
{"title":"A comparative study for molecular insight on riparins (I–III) by quantum chemical, spectroscopic, and molecular docking methods","authors":"Tirth Raj Paneru ,&nbsp;Bhawani Datt Joshi ,&nbsp;Poonam Tandon ,&nbsp;Laura Maria Teodorio Vidal ,&nbsp;Alejandro Pedro Ayala","doi":"10.1016/j.molliq.2025.127314","DOIUrl":null,"url":null,"abstract":"<div><div>This work presented the conformer analysis of riparins (I-III) through a one-dimensional potential energy scan and investigated the most stable conformer. This study aims to provide molecular insight into the most stable structure of riparins (I-III) using density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The calculated FT-IR, Raman, and UV–Vis absorption spectra showed agreement with the experimental results after comparison. In riparin I, the N–H and C=O groups’ experimental wavenumber red shifted in comparison to the computed value, suggesting that they participate in intermolecular hydrogen bonding for crystal packing. The C=O and O–H groups in riparin II establish an intramolecular hydrogen bond, whereas both O–H groups in riparin III contribute to intramolecular hydrogen bonding with the C=O and N–H groups, which results in alterations in wavenumbers. This conclusion was supported by quantum theory of atoms in molecule, reduced density gradient plot, and electrostatic potential surface analysis. For riparins I, II, and III, the frontier molecular orbital energy gap (<span><math><msub><mrow><mi>Δ</mi><mi>E</mi></mrow><mrow><mi>L</mi><mo>-</mo><mi>H</mi></mrow></msub></math></span>) was determined to be 4.925, 4.817, and 4.729 eV, respectively. This suggests that riparin I is more kinetically stable and riparin III is more reactive. ADMET analysis predicts the absorbance of riparin III in the gastrointestinal tract, while riparins I and II penetrate the blood–brain barrier. Molecular docking of riparins (I–III) with PDB: 1QR2 and 2QR2 reveals that riparin III has the highest binding affinity (−8.6 kcal/mol) with 1QR2, suggesting it a potent inhibitor of 1QR2.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"426 ","pages":"Article 127314"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225004817","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presented the conformer analysis of riparins (I-III) through a one-dimensional potential energy scan and investigated the most stable conformer. This study aims to provide molecular insight into the most stable structure of riparins (I-III) using density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The calculated FT-IR, Raman, and UV–Vis absorption spectra showed agreement with the experimental results after comparison. In riparin I, the N–H and C=O groups’ experimental wavenumber red shifted in comparison to the computed value, suggesting that they participate in intermolecular hydrogen bonding for crystal packing. The C=O and O–H groups in riparin II establish an intramolecular hydrogen bond, whereas both O–H groups in riparin III contribute to intramolecular hydrogen bonding with the C=O and N–H groups, which results in alterations in wavenumbers. This conclusion was supported by quantum theory of atoms in molecule, reduced density gradient plot, and electrostatic potential surface analysis. For riparins I, II, and III, the frontier molecular orbital energy gap (ΔEL-H) was determined to be 4.925, 4.817, and 4.729 eV, respectively. This suggests that riparin I is more kinetically stable and riparin III is more reactive. ADMET analysis predicts the absorbance of riparin III in the gastrointestinal tract, while riparins I and II penetrate the blood–brain barrier. Molecular docking of riparins (I–III) with PDB: 1QR2 and 2QR2 reveals that riparin III has the highest binding affinity (−8.6 kcal/mol) with 1QR2, suggesting it a potent inhibitor of 1QR2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
期刊最新文献
Physicochemical properties of triethylamine hydrochloride-based chloroaluminate ionic liquid A multichannel fluorescent sensor for solid and vapor phase detection of 4-nitroaniline and salicylaldehyde with latent fingerprint and an invisible ink analysis: Extensive experimental and DFT studies Local field and deformation of droplets in emulsions Editorial Board Correlation of thermochemical and spectral characteristics as a method for determining the type of binding of porphyrins to nucleic acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1