Particle floating and transfer effect in cored wire arc additive manufacturing: Formation mechanism and laser shock inhibition

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Machine Tools & Manufacture Pub Date : 2025-03-11 DOI:10.1016/j.ijmachtools.2025.104260
Le Jia, Hao Yi, Furui Jiao, Huajun Cao
{"title":"Particle floating and transfer effect in cored wire arc additive manufacturing: Formation mechanism and laser shock inhibition","authors":"Le Jia,&nbsp;Hao Yi,&nbsp;Furui Jiao,&nbsp;Huajun Cao","doi":"10.1016/j.ijmachtools.2025.104260","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-material wire arc additive manufacturing (WAAM) presents a promising approach for fabricating high-end equipment components, with cored wire arc additive manufacturing (CWAAM) attracting significant interest. However, uneven particle distribution in CWAAM impedes technological advancement, as the mechanisms of particle flotation and its suppression remain unexplored. To address this issue, a novel nickel alloy cored wire incorporating TiC particles was developed, and the mechanism of particle flotation was investigated for the first time. The results indicate that the cored wire exhibits excellent formability, with particle flotation attributed to unstable droplet transfer, particle overflow along the side seam, and density differences. Furthermore, a laser shock-assisted CWAAM method was introduced to suppress particle flotation. Laser shock generated shock waves in the molten pool, inducing significant oscillations. Shock wave propagation altered molten pool flow dynamics and particle motion, effectively suppressing particle flotation and mitigating defects. This resulted in uniform particle dispersion in the deposited layer and facilitated particle size reduction. Additionally, laser shock eliminated porosity and fusion defects caused by particle flotation. The average grain size of the deposition layer decreased by 34.5 % and 23.3 % compared to solid wire arc additive manufacturing (SWAAM) and CWAAM, respectively, with a more random grain orientation. The average microhardness reached 394.8 HV<sub>0.3</sub>, exceeding that of the other two methods, with no significant distribution differences. Yield strength, ultimate tensile strength, and elongation increased by 7.71 %, 5.37 %, and 12.71 % in the horizontal direction, and by 18.62 %, 6.63 %, and 13.03 % in the longitudinal direction, respectively, compared to conditions without laser shock, effectively reducing performance anisotropy. This innovative laser shock-assisted CWAAM method effectively mitigates weakened reinforcement effects and defects caused by particle flotation, thereby advancing WAAM toward large-scale, multi-material, and high-performance manufacturing.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"207 ","pages":"Article 104260"},"PeriodicalIF":14.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089069552500015X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-material wire arc additive manufacturing (WAAM) presents a promising approach for fabricating high-end equipment components, with cored wire arc additive manufacturing (CWAAM) attracting significant interest. However, uneven particle distribution in CWAAM impedes technological advancement, as the mechanisms of particle flotation and its suppression remain unexplored. To address this issue, a novel nickel alloy cored wire incorporating TiC particles was developed, and the mechanism of particle flotation was investigated for the first time. The results indicate that the cored wire exhibits excellent formability, with particle flotation attributed to unstable droplet transfer, particle overflow along the side seam, and density differences. Furthermore, a laser shock-assisted CWAAM method was introduced to suppress particle flotation. Laser shock generated shock waves in the molten pool, inducing significant oscillations. Shock wave propagation altered molten pool flow dynamics and particle motion, effectively suppressing particle flotation and mitigating defects. This resulted in uniform particle dispersion in the deposited layer and facilitated particle size reduction. Additionally, laser shock eliminated porosity and fusion defects caused by particle flotation. The average grain size of the deposition layer decreased by 34.5 % and 23.3 % compared to solid wire arc additive manufacturing (SWAAM) and CWAAM, respectively, with a more random grain orientation. The average microhardness reached 394.8 HV0.3, exceeding that of the other two methods, with no significant distribution differences. Yield strength, ultimate tensile strength, and elongation increased by 7.71 %, 5.37 %, and 12.71 % in the horizontal direction, and by 18.62 %, 6.63 %, and 13.03 % in the longitudinal direction, respectively, compared to conditions without laser shock, effectively reducing performance anisotropy. This innovative laser shock-assisted CWAAM method effectively mitigates weakened reinforcement effects and defects caused by particle flotation, thereby advancing WAAM toward large-scale, multi-material, and high-performance manufacturing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
期刊最新文献
Particle floating and transfer effect in cored wire arc additive manufacturing: Formation mechanism and laser shock inhibition Stable tongues induced by milling tool runout Optimized dispersion of inorganic metal salts in photocurable resins for high-precision continuous 3D printing of complex metal structures A novel continuous dynamic recrystallization model to reveal grain refinement mechanism in constraining ring rolling of thin-walled conical structure with inner ribs Covalently armoring graphene on diamond abrasives with unprecedented wear resistance and abrasive performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1