Superstatistical approach of electric potential and acoustic emission for investigating damage evolution and precursor of water-bearing sandstone under uniaxial compression
Tiancheng Shan , Zhonghui Li , Xin Zhang , Xiaoran Wang , Haishan Jia , Enyuan Wang , Quancong Zhang , Yue Niu , Dongming Wang
{"title":"Superstatistical approach of electric potential and acoustic emission for investigating damage evolution and precursor of water-bearing sandstone under uniaxial compression","authors":"Tiancheng Shan , Zhonghui Li , Xin Zhang , Xiaoran Wang , Haishan Jia , Enyuan Wang , Quancong Zhang , Yue Niu , Dongming Wang","doi":"10.1016/j.ijrmms.2025.106063","DOIUrl":null,"url":null,"abstract":"<div><div>Deep resource mining and geotechnical structures are prone to serious geological disasters in complex environments of abundant groundwater and high geostress. Comprehensive analysis of electric potential (EP) and acoustic emission (AE) from a superstatistical perspective promises predictive insights, necessitating further exploration. In this paper, to reveal the effects of different water contents and acidity, the EP and AE monitoring tests of coarse sandstone under uniaxial compression were conducted. The temporal evolution and superstatistical features of AEs and EPs were analyzed to elucidate correlations with pore-fissure parameters and mechanical properties. The impact of water content and acidity on response mechanisms of EPs and AEs was investigated by nuclear magnetic resonance (NMR), scanning electron microscope (SEM) and X-ray Diffraction (XRD) tests. Based on Tsallis entropy <em>q</em><sub>EP</sub> and <em>q</em><sub>AE</sub>, a novel muti-geophysical prediction method were proposed. The results indicate mechanical properties and AE activities decrease with increasing water content and acidity, while the average EP value enhances due to electrokinetic effect. EPs and AEs exhibit superstatistical features, and <em>q</em><sub>EP</sub> and <em>q</em><sub>AE</sub> decrease with increasing water content and acidity, correlating negatively with porosity and pore fissure dimensions. It is attributed to reduced frictional slip and rupture severity by water lubrication and chemical erosion, diminishing charge generation and elastic wave release. <em>q</em><sub>EP</sub> and <em>q</em><sub>AE</sub> vary from 1 to 3, and display drastic fluctuation after plastic stage. Then damage weighting coefficient and damage correlation coefficient proposed are used to identify the precursory of rock failure and obtain good prediction effect. These findings offer new perspectives for the prediction of geological disasters associated with water-rich environments.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"189 ","pages":"Article 106063"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000401","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep resource mining and geotechnical structures are prone to serious geological disasters in complex environments of abundant groundwater and high geostress. Comprehensive analysis of electric potential (EP) and acoustic emission (AE) from a superstatistical perspective promises predictive insights, necessitating further exploration. In this paper, to reveal the effects of different water contents and acidity, the EP and AE monitoring tests of coarse sandstone under uniaxial compression were conducted. The temporal evolution and superstatistical features of AEs and EPs were analyzed to elucidate correlations with pore-fissure parameters and mechanical properties. The impact of water content and acidity on response mechanisms of EPs and AEs was investigated by nuclear magnetic resonance (NMR), scanning electron microscope (SEM) and X-ray Diffraction (XRD) tests. Based on Tsallis entropy qEP and qAE, a novel muti-geophysical prediction method were proposed. The results indicate mechanical properties and AE activities decrease with increasing water content and acidity, while the average EP value enhances due to electrokinetic effect. EPs and AEs exhibit superstatistical features, and qEP and qAE decrease with increasing water content and acidity, correlating negatively with porosity and pore fissure dimensions. It is attributed to reduced frictional slip and rupture severity by water lubrication and chemical erosion, diminishing charge generation and elastic wave release. qEP and qAE vary from 1 to 3, and display drastic fluctuation after plastic stage. Then damage weighting coefficient and damage correlation coefficient proposed are used to identify the precursory of rock failure and obtain good prediction effect. These findings offer new perspectives for the prediction of geological disasters associated with water-rich environments.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.