Experimental investigation of rock mineralogical effect on energy transfer and rockbursts induced by tensile fracturing of roof strata

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL International Journal of Rock Mechanics and Mining Sciences Pub Date : 2025-03-16 DOI:10.1016/j.ijrmms.2025.106087
Binwen Ma , Heping Xie , Xiufeng Zhang , Hongwei Zhou , Changtai Zhou , Wenbin Sun , Jianbo Zhu
{"title":"Experimental investigation of rock mineralogical effect on energy transfer and rockbursts induced by tensile fracturing of roof strata","authors":"Binwen Ma ,&nbsp;Heping Xie ,&nbsp;Xiufeng Zhang ,&nbsp;Hongwei Zhou ,&nbsp;Changtai Zhou ,&nbsp;Wenbin Sun ,&nbsp;Jianbo Zhu","doi":"10.1016/j.ijrmms.2025.106087","DOIUrl":null,"url":null,"abstract":"<div><div>The elastic energy released by the tensile fracturing of hard roof strata is partially transferred to surrounding rocks and causes rockbursts during underground coal exploitation. However, the effect of rock mineralogical properties on the transferred energy and rockbursts has not been quantitatively analysed. In this study, three-point bending tests were conducted to reproduce the tensile fracturing of roof strata, with the transferred energy, i.e., the radiated energy as acoustic emission (AE) events and the kinetic energy of fractured rock, being calculated using a calibrated AE system and a digital image correlation (DIC) system. The effects of rock cementation, rock grain size and mineral composition on the energy transfer were quantitatively analysed. The energy transfer during the tensile fracture of roof strata is 2–3 orders of magnitude higher in the siliceous roof strata than in the argillaceous ones. The energy transfer for the siliceous strata stems mainly from the kinetic energy of fractured strata that is one order of magnitude higher than the radiated energy. The high kinetic energy is attributed to a very high crack velocity of 225 m/s. Owing to localized micro-shear failure and the detachment of rock grains, the energy transfer stems mainly from the radiated energy for the argillaceous strata. The energy transfer increases with the increased grain size and brittle minerals. It can be found that rock cementation plays a domain role in the rock mineralogical effects on the energy transfer and rockbursts compared to grain size and mineral component. The tensile fracture of brittle siliceous cemented strata exhibits a much greater rockburst hazard than plastic cemented strata. These findings have implications for the identification of roof strata with rockburst hazards and the effective prevention of rockburst disasters caused by the tensile fracture of hard key roof strata.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"189 ","pages":"Article 106087"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000644","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The elastic energy released by the tensile fracturing of hard roof strata is partially transferred to surrounding rocks and causes rockbursts during underground coal exploitation. However, the effect of rock mineralogical properties on the transferred energy and rockbursts has not been quantitatively analysed. In this study, three-point bending tests were conducted to reproduce the tensile fracturing of roof strata, with the transferred energy, i.e., the radiated energy as acoustic emission (AE) events and the kinetic energy of fractured rock, being calculated using a calibrated AE system and a digital image correlation (DIC) system. The effects of rock cementation, rock grain size and mineral composition on the energy transfer were quantitatively analysed. The energy transfer during the tensile fracture of roof strata is 2–3 orders of magnitude higher in the siliceous roof strata than in the argillaceous ones. The energy transfer for the siliceous strata stems mainly from the kinetic energy of fractured strata that is one order of magnitude higher than the radiated energy. The high kinetic energy is attributed to a very high crack velocity of 225 m/s. Owing to localized micro-shear failure and the detachment of rock grains, the energy transfer stems mainly from the radiated energy for the argillaceous strata. The energy transfer increases with the increased grain size and brittle minerals. It can be found that rock cementation plays a domain role in the rock mineralogical effects on the energy transfer and rockbursts compared to grain size and mineral component. The tensile fracture of brittle siliceous cemented strata exhibits a much greater rockburst hazard than plastic cemented strata. These findings have implications for the identification of roof strata with rockburst hazards and the effective prevention of rockburst disasters caused by the tensile fracture of hard key roof strata.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
Ultrasonic and NMR-based estimation of the microstructure at ice-rock interface Experimental investigation of rock mineralogical effect on energy transfer and rockbursts induced by tensile fracturing of roof strata Superstatistical approach of electric potential and acoustic emission for investigating damage evolution and precursor of water-bearing sandstone under uniaxial compression Optical quantification and characterization of 3D stress fields and plastic zones around arch tunnel models using stress freezing and 3D printing techniques Is more always better? Study on uncertainties introduced by decision-making process of model design — A case study with thermo-osmosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1