Coupled SWMM-MOEA/D for multi-objective optimization of low impact development in urban stormwater systems

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2025-03-09 DOI:10.1016/j.jhydrol.2025.133044
Kazem Javan , Saeed Banihashemi , Amirhossein Nazari , Abbas Roozbahani , Mariam Darestani , Hanieh Hossieni
{"title":"Coupled SWMM-MOEA/D for multi-objective optimization of low impact development in urban stormwater systems","authors":"Kazem Javan ,&nbsp;Saeed Banihashemi ,&nbsp;Amirhossein Nazari ,&nbsp;Abbas Roozbahani ,&nbsp;Mariam Darestani ,&nbsp;Hanieh Hossieni","doi":"10.1016/j.jhydrol.2025.133044","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating challenge of unsustainable urban development worldwide has precipitated changes in land usage, contributing to increased impermeability of the urban landscape. This phenomenon exacerbates urban runoff, a critical environmental concern. In response, Low Impact Development (LID) techniques, recognized for their environmental efficacy, have emerged as pivotal in mitigating urban runoff. However, transforming the hydrological dynamics of urban watersheds into a more sustainable state necessitates substantial financial commitments from relevant authorities. Consequently, strategic LID planning becomes essential to maximize effectiveness while minimizing costs. This research introduces a novel, hybrid modeling strategy that integrates the Storm Water Management Model (SWMM) with the Multi-Objective Evolutionary Algorithm by Decomposition (MOEA/D) optimization algorithm. This approach aims to concurrently minimize runoff volume, peak flow rate, and implementation expenses. Focusing on a segment of Tehran Municipality’s urban stormwater system in District 11, the study evaluates four distinct LID scenarios. These scenarios encompass various configurations of Rain Barrels (RB), Bioretention Cells (BC), Green Roofs (GR), and Porous Pavements (PP). Utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for comparative analysis, the study results identify the most efficacious scenario, S2_1, including RB and BC, which achieves a 19.34% reduction in runoff volume and a 46.53 % decrease in peak flow rate, all at the implementation cost of 123,169 USD. A close second, scenario S3_1 incorporating RB and PP, demonstrates a 17 % and 46.55 % reduction in runoff volume and peak flow at an expenditure of 107,017 USD, respectively. The proposed SWMM-MOEA/D model, in conjunction with TOPSIS, presents a valuable tool for LID planning and optimization, offering decision-makers and relevant entities a pragmatic approach to address the challenges of urban runoff management.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"656 ","pages":"Article 133044"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425003828","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating challenge of unsustainable urban development worldwide has precipitated changes in land usage, contributing to increased impermeability of the urban landscape. This phenomenon exacerbates urban runoff, a critical environmental concern. In response, Low Impact Development (LID) techniques, recognized for their environmental efficacy, have emerged as pivotal in mitigating urban runoff. However, transforming the hydrological dynamics of urban watersheds into a more sustainable state necessitates substantial financial commitments from relevant authorities. Consequently, strategic LID planning becomes essential to maximize effectiveness while minimizing costs. This research introduces a novel, hybrid modeling strategy that integrates the Storm Water Management Model (SWMM) with the Multi-Objective Evolutionary Algorithm by Decomposition (MOEA/D) optimization algorithm. This approach aims to concurrently minimize runoff volume, peak flow rate, and implementation expenses. Focusing on a segment of Tehran Municipality’s urban stormwater system in District 11, the study evaluates four distinct LID scenarios. These scenarios encompass various configurations of Rain Barrels (RB), Bioretention Cells (BC), Green Roofs (GR), and Porous Pavements (PP). Utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for comparative analysis, the study results identify the most efficacious scenario, S2_1, including RB and BC, which achieves a 19.34% reduction in runoff volume and a 46.53 % decrease in peak flow rate, all at the implementation cost of 123,169 USD. A close second, scenario S3_1 incorporating RB and PP, demonstrates a 17 % and 46.55 % reduction in runoff volume and peak flow at an expenditure of 107,017 USD, respectively. The proposed SWMM-MOEA/D model, in conjunction with TOPSIS, presents a valuable tool for LID planning and optimization, offering decision-makers and relevant entities a pragmatic approach to address the challenges of urban runoff management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment
IF 8.3 1区 材料科学Corrosion SciencePub Date : 2015-05-01 DOI: 10.1016/j.corsci.2015.02.027
Dong Jun Park, Hyun Gil Kim, Jeong Yong Park, Yang Il Jung, Jeong Hwan Park, Yang Hyun Koo
A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas.
IF 1.6 1区 化学Accounts of Chemical ResearchPub Date : 2021-06-01 DOI: 10.1063/5.0043495
N Tamura, M Yoshinuma, X Yin, K Ida, C Suzuki, M Shoji, K Mukai, H Funaba
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Seasonal freeze-thaw CO2 sink 'midday rest' phenomenon in lakes: A case study of the largest freshwater lake in the Yellow River Basin Optimized scheduling of cascade hydropower stations with advance risk control in dynamic operations Wellbore-reservoir and multiphysics coupling model for liquid CO2 cyclic injection in a CCUS-EGR framework Water level fluctuations control wetland hydrological connectivity in driving the integrity of wetlands Characteristics of the water extent and width of endorheic Tibetan Plateau rivers revealed by Sentinel-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1