Seismic performance and damage characteristics of pile network composite-reinforced high-speed railway subgrade

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-03-12 DOI:10.1016/j.soildyn.2025.109340
Mao Yue , Changwei Yang , Jie Fan , Jia Luo , Jing Lian , Shiguang Zhou , Xuanming Ding
{"title":"Seismic performance and damage characteristics of pile network composite-reinforced high-speed railway subgrade","authors":"Mao Yue ,&nbsp;Changwei Yang ,&nbsp;Jie Fan ,&nbsp;Jia Luo ,&nbsp;Jing Lian ,&nbsp;Shiguang Zhou ,&nbsp;Xuanming Ding","doi":"10.1016/j.soildyn.2025.109340","DOIUrl":null,"url":null,"abstract":"<div><div>A series of large-scale shaking table tests was conducted on a pile network composite-reinforced high-speed railway subgrade. The displacement, peak acceleration amplification factor, dynamic soil pressure, and geogrid strain data were used to investigate the dynamic characteristics. The Hilbert–Huang transform spectrum, marginal spectrum, and damping ratios were used to study the seismic energy dissipation characteristics and damage evolution mechanisms of the reinforced subgrade. The results indicate that the graded loading of seismic waves induces a global settlement phenomenon within the subgrade, the displacement phenomenon of the slope is more evident, and the reinforcement effectively mitigates the amplification effect of the peak acceleration along the elevation. The peak and cumulative residual dynamic soil pressures were most significant near the bedding layer, and the upper and middle parts of the subgrade exhibited superior stabilization performance. The geogrid reduced the local vibration variability and enhanced the overall stability. The damage evolution in the middle part of the subgrade was relatively gentle, whereas the slope exhibited a multistage development trend. The internal damage of the subgrade grows slowly at 0.1–0.2 g, faster at 0.2–0.6 g, and rapidly at 0.6–1.0 g.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109340"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of large-scale shaking table tests was conducted on a pile network composite-reinforced high-speed railway subgrade. The displacement, peak acceleration amplification factor, dynamic soil pressure, and geogrid strain data were used to investigate the dynamic characteristics. The Hilbert–Huang transform spectrum, marginal spectrum, and damping ratios were used to study the seismic energy dissipation characteristics and damage evolution mechanisms of the reinforced subgrade. The results indicate that the graded loading of seismic waves induces a global settlement phenomenon within the subgrade, the displacement phenomenon of the slope is more evident, and the reinforcement effectively mitigates the amplification effect of the peak acceleration along the elevation. The peak and cumulative residual dynamic soil pressures were most significant near the bedding layer, and the upper and middle parts of the subgrade exhibited superior stabilization performance. The geogrid reduced the local vibration variability and enhanced the overall stability. The damage evolution in the middle part of the subgrade was relatively gentle, whereas the slope exhibited a multistage development trend. The internal damage of the subgrade grows slowly at 0.1–0.2 g, faster at 0.2–0.6 g, and rapidly at 0.6–1.0 g.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Seismic performance and soil-structure interaction of shallow reinforced concrete tunnels Seismic performance and damage characteristics of pile network composite-reinforced high-speed railway subgrade Study on the influence of unsymmetrical surcharge on adjacent pile foundations in a coastal soft soil area Experimental study on liquefaction behavior of desaturated calcareous sand under various stress conditions using air injection technique Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1