Mao Yue , Changwei Yang , Jie Fan , Jia Luo , Jing Lian , Shiguang Zhou , Xuanming Ding
{"title":"Seismic performance and damage characteristics of pile network composite-reinforced high-speed railway subgrade","authors":"Mao Yue , Changwei Yang , Jie Fan , Jia Luo , Jing Lian , Shiguang Zhou , Xuanming Ding","doi":"10.1016/j.soildyn.2025.109340","DOIUrl":null,"url":null,"abstract":"<div><div>A series of large-scale shaking table tests was conducted on a pile network composite-reinforced high-speed railway subgrade. The displacement, peak acceleration amplification factor, dynamic soil pressure, and geogrid strain data were used to investigate the dynamic characteristics. The Hilbert–Huang transform spectrum, marginal spectrum, and damping ratios were used to study the seismic energy dissipation characteristics and damage evolution mechanisms of the reinforced subgrade. The results indicate that the graded loading of seismic waves induces a global settlement phenomenon within the subgrade, the displacement phenomenon of the slope is more evident, and the reinforcement effectively mitigates the amplification effect of the peak acceleration along the elevation. The peak and cumulative residual dynamic soil pressures were most significant near the bedding layer, and the upper and middle parts of the subgrade exhibited superior stabilization performance. The geogrid reduced the local vibration variability and enhanced the overall stability. The damage evolution in the middle part of the subgrade was relatively gentle, whereas the slope exhibited a multistage development trend. The internal damage of the subgrade grows slowly at 0.1–0.2 g, faster at 0.2–0.6 g, and rapidly at 0.6–1.0 g.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109340"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A series of large-scale shaking table tests was conducted on a pile network composite-reinforced high-speed railway subgrade. The displacement, peak acceleration amplification factor, dynamic soil pressure, and geogrid strain data were used to investigate the dynamic characteristics. The Hilbert–Huang transform spectrum, marginal spectrum, and damping ratios were used to study the seismic energy dissipation characteristics and damage evolution mechanisms of the reinforced subgrade. The results indicate that the graded loading of seismic waves induces a global settlement phenomenon within the subgrade, the displacement phenomenon of the slope is more evident, and the reinforcement effectively mitigates the amplification effect of the peak acceleration along the elevation. The peak and cumulative residual dynamic soil pressures were most significant near the bedding layer, and the upper and middle parts of the subgrade exhibited superior stabilization performance. The geogrid reduced the local vibration variability and enhanced the overall stability. The damage evolution in the middle part of the subgrade was relatively gentle, whereas the slope exhibited a multistage development trend. The internal damage of the subgrade grows slowly at 0.1–0.2 g, faster at 0.2–0.6 g, and rapidly at 0.6–1.0 g.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.