Qi Lang;Minjuan Wang;Minghao Yin;Shuang Liang;Wenzhuo Song
{"title":"Transforming Education With Generative AI (GAI): Key Insights and Future Prospects","authors":"Qi Lang;Minjuan Wang;Minghao Yin;Shuang Liang;Wenzhuo Song","doi":"10.1109/TLT.2025.3537618","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (GAI) has demonstrated remarkable potential in both educational practice and research, particularly in areas, such as personalized learning, adaptive assessment, innovative teaching methods, and cross-cultural communication. However, it faces several significant challenges, including the comprehension of complex domain knowledge, technological accessibility, and the delineation of AI's role in education. Addressing these challenges necessitates collaborative efforts from educators and researchers. This article summarizes the state-of-the-art large language models (LLMs) developed by various technology companies, exploring their diverse applications and unique contributions to primary, higher, and vocational education. Furthermore, it reviews recent research from the past three years, focusing on the challenges and solutions associated with GAI in educational practice and research. The aim of the review is to provide novel insights for enhancing human–computer interaction in educational settings through the utilization of GAI. Statistical analysis reveals that the current application of LLMs in the education sector is predominantly centered on the ChatGPT series. A key focus for future research lies in effectively integrating a broader range of LLMs into educational tasks, with particular emphasis on the interaction between multimodal LLMs and educational scenarios.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"230-242"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10870136/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Generative artificial intelligence (GAI) has demonstrated remarkable potential in both educational practice and research, particularly in areas, such as personalized learning, adaptive assessment, innovative teaching methods, and cross-cultural communication. However, it faces several significant challenges, including the comprehension of complex domain knowledge, technological accessibility, and the delineation of AI's role in education. Addressing these challenges necessitates collaborative efforts from educators and researchers. This article summarizes the state-of-the-art large language models (LLMs) developed by various technology companies, exploring their diverse applications and unique contributions to primary, higher, and vocational education. Furthermore, it reviews recent research from the past three years, focusing on the challenges and solutions associated with GAI in educational practice and research. The aim of the review is to provide novel insights for enhancing human–computer interaction in educational settings through the utilization of GAI. Statistical analysis reveals that the current application of LLMs in the education sector is predominantly centered on the ChatGPT series. A key focus for future research lies in effectively integrating a broader range of LLMs into educational tasks, with particular emphasis on the interaction between multimodal LLMs and educational scenarios.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.