Environmental sustainable ZrO2 -phosphorous Biochar nano composite derived from sugarcane bagasse and their adsorption behavior of antidepressant drugs

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY BMC Chemistry Pub Date : 2025-03-14 DOI:10.1186/s13065-025-01430-4
Walaa A. Elhamdy
{"title":"Environmental sustainable ZrO2 -phosphorous Biochar nano composite derived from sugarcane bagasse and their adsorption behavior of antidepressant drugs","authors":"Walaa A. Elhamdy","doi":"10.1186/s13065-025-01430-4","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphorous biochar was synthesized from sugarcane bagasse (SB) by applying a 2:1 weight ratio of H<sub>3</sub>PO<sub>4</sub> to OP and pyrolyzing it at 600 °C under nitrogen. Sugarcane bagasse was selected for its affordability and environmental benefits as a carbon support. Following this, a zirconium-loaded PC nanocomposite (ZrP400) was developed by impregnating zirconium hydroxide in concentrations 5–30% onto the mesoporous phosphorous biochar, which was then thermally treated at 400ºC. Analytical techniques showed that the ZrP400 adsorbents had a high surface area (1697–2434 m²/g) and considerable porosity. The effectiveness of these adsorbents in removing the hazardous tricyclic antidepressant amitriptyline (AMT) from water was tested. At a pH of 6.52, the neutral adsorbent provided various chemical functional groups that facilitated the binding of amitriptyline. With 20 mg of adsorbent at 35ºC, the capacity for amitriptyline adsorption reached up to 585 mg/g. Adsorption equilibrium was reached within 120 min over a concentration range of 10 to 300 mg/L. Kinetic and equilibrium data showed that the adsorption was well described by the pseudo-second-order and Freundlich isotherm models, indicating that chemisorption was the primary mechanism, with physisorption also contributing significantly to amitriptyline removal. The spent adsorbent could be effectively regenerated using ethanol. Additionally, the process’s sustainability was assessed using GAPI and AGREE metrics, which confirmed its environmental friendliness, practicality, and sustainability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01430-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01430-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorous biochar was synthesized from sugarcane bagasse (SB) by applying a 2:1 weight ratio of H3PO4 to OP and pyrolyzing it at 600 °C under nitrogen. Sugarcane bagasse was selected for its affordability and environmental benefits as a carbon support. Following this, a zirconium-loaded PC nanocomposite (ZrP400) was developed by impregnating zirconium hydroxide in concentrations 5–30% onto the mesoporous phosphorous biochar, which was then thermally treated at 400ºC. Analytical techniques showed that the ZrP400 adsorbents had a high surface area (1697–2434 m²/g) and considerable porosity. The effectiveness of these adsorbents in removing the hazardous tricyclic antidepressant amitriptyline (AMT) from water was tested. At a pH of 6.52, the neutral adsorbent provided various chemical functional groups that facilitated the binding of amitriptyline. With 20 mg of adsorbent at 35ºC, the capacity for amitriptyline adsorption reached up to 585 mg/g. Adsorption equilibrium was reached within 120 min over a concentration range of 10 to 300 mg/L. Kinetic and equilibrium data showed that the adsorption was well described by the pseudo-second-order and Freundlich isotherm models, indicating that chemisorption was the primary mechanism, with physisorption also contributing significantly to amitriptyline removal. The spent adsorbent could be effectively regenerated using ethanol. Additionally, the process’s sustainability was assessed using GAPI and AGREE metrics, which confirmed its environmental friendliness, practicality, and sustainability.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
期刊最新文献
Environmental sustainable ZrO2 -phosphorous Biochar nano composite derived from sugarcane bagasse and their adsorption behavior of antidepressant drugs Correction to: Evaluation of phytochemical compounds and proximate analysis of doum palm fruit (Hyphaene thebaica) blend with turmeric powder (Curcuma longa) (Z)-N-(3-([1,1'-biphenyl]-2-yl)-4-heptyl-4-hydroxythiazolidin-2-ylidene)-4-bromobenzamide as carbonic anhydrase inhibitor: exploration of its in vitro and in silico studies Theoretical study on the alkyl chain length impact of azobenzene-based photoresponsive ionic liquids Solidified reverse micellar solution-based chitosan-coated solid lipid nanoparticles as a new approach to enhance oral delivery of artemether in malaria treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1