Accelerated Missense Mutation Identification in Intrinsically Disordered Proteins Using Deep Learning.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2025-03-12 DOI:10.1021/acs.biomac.4c01124
Swarnadeep Seth, Aniket Bhattacharya
{"title":"Accelerated Missense Mutation Identification in Intrinsically Disordered Proteins Using Deep Learning.","authors":"Swarnadeep Seth, Aniket Bhattacharya","doi":"10.1021/acs.biomac.4c01124","DOIUrl":null,"url":null,"abstract":"<p><p>We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L. <i>PLoS Comput. Biol.</i> 2018, 14, e1005941,Tesei, G. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 2021, 118, e2111696118,Seth, S. <i>J. Chem. Phys.</i> 2024, 160, 014902] to generate the training sets for the DL algorithm. Using the gyration radii ⟨<i>R</i><sub>g</sub>⟩ of the simulated IDPs as the training set, we develop a multilayer perceptron neural net (NN) architecture that predicts the gyration radii of 33 IDPs previously studied by using BD simulation with 97% accuracy from the sequence and the corresponding parameters from the HPS model. We now utilize this NN to predict gyration radii of every permutation of missense mutations in IDPs. Our approach successfully identifies mutation-prone regions that induce significant alterations in the radius of gyration when compared to the wild-type IDP sequence. We further validate the prediction by running BD simulations on the subset of identified mutants. The neural network yields a (10<sup>4</sup>-10<sup>6</sup>)-fold faster computation in the search space for potentially harmful mutations. Our findings have substantial implications for rapid identification and understanding of diseases related to missense mutations in IDPs and for the development of potential therapeutic interventions. The method can be extended to accurate predictions of other mutation effects in disordered proteins.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01124","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L. PLoS Comput. Biol. 2018, 14, e1005941,Tesei, G. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2111696118,Seth, S. J. Chem. Phys. 2024, 160, 014902] to generate the training sets for the DL algorithm. Using the gyration radii ⟨Rg⟩ of the simulated IDPs as the training set, we develop a multilayer perceptron neural net (NN) architecture that predicts the gyration radii of 33 IDPs previously studied by using BD simulation with 97% accuracy from the sequence and the corresponding parameters from the HPS model. We now utilize this NN to predict gyration radii of every permutation of missense mutations in IDPs. Our approach successfully identifies mutation-prone regions that induce significant alterations in the radius of gyration when compared to the wild-type IDP sequence. We further validate the prediction by running BD simulations on the subset of identified mutants. The neural network yields a (104-106)-fold faster computation in the search space for potentially harmful mutations. Our findings have substantial implications for rapid identification and understanding of diseases related to missense mutations in IDPs and for the development of potential therapeutic interventions. The method can be extended to accurate predictions of other mutation effects in disordered proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Accelerated Missense Mutation Identification in Intrinsically Disordered Proteins Using Deep Learning. Synthetic Strategy to Build High-Molecular-Weight Poly(L-tyrosine) and Its Unexplored β-Sheet Block Copolymer Nanoarchitectures. Fabrication of pH- and Ultrasound-Responsive Polymeric Micelles: The Effect of Amphiphilic Block Copolymers with Different Hydrophilic/Hydrophobic Block Ratios for Self-Assembly and Controlled Drug Release. Surface-Vinylated Cellulose Nanocrystals as Cross-Linkers for Hydrogel Composites. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1