Yan Sun, Sheng-Qing Gao, Xue Wang, Tao Li, Yan-Ling Han, Shu-Hao Miao, Ran Zhao, Xiao-Bo Zheng, Jia-Yin Qiu, Wang-Xuan Jin, Chao-Chao Gao, Meng-Liang Zhou
{"title":"Galectin-3 activates microglia and promotes neurological impairment via NLRP3/pyroptosis pathway following traumatic brain injury.","authors":"Yan Sun, Sheng-Qing Gao, Xue Wang, Tao Li, Yan-Ling Han, Shu-Hao Miao, Ran Zhao, Xiao-Bo Zheng, Jia-Yin Qiu, Wang-Xuan Jin, Chao-Chao Gao, Meng-Liang Zhou","doi":"10.1016/j.brainres.2025.149560","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Externally caused traumatic brain injury (TBI) poses a woeful worldwide health concern, bringing about disability, death, and prolonged neurological impairment. Increased galectin-3 levels have been linked to unfavorable outcomes in several neurological conditions. This study explores the role of galectin-3 in TBI, specifically examining its contribution to neuroinflammation.</p><p><strong>Methods: </strong>BV2 microglia cells treated with lipopolysaccharide (LPS) and a mouse model of TBI were applied to investigate the impact of galectin-3 on neuroinflammation following TBI. Western blotting and immunofluorescence labeling were applied for evaluating protein levels and colocalization. Adeno-associated virus (AAV) that targets microglia was used to knock down galectin-3 in microglia. Nissl staining and the modified neurologic severity score were employed in evaluating neural survival and neurological function, and the cognitive impairment following TBI was assessed by the Y-Maze and Morri water maze test.</p><p><strong>Results: </strong>Galectin-3 expression was shown to rise dramatically after TBI, peaking between days five and seven. In vitro, BV2 cells treated with LPS showed reduced NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation when galectin-3 was inhibited. In LPS-activated microglia, galectin-3 inhibition specifically decreased the expression of Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), p-NF-κB, NLRP3, Apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and Gasdermin D (GSDMD). Injection with AAV containing siRNA to knock down galectin-3 in microglia was operated on mice in vivo. Following TBI, this knockdown led to reduced NLRP3 inflammasome activation, neuronal death, neurological impairments and cognitive impairment.</p><p><strong>Conclusions: </strong>Our foundings indicate that modulating microglia-derived galectin-3 following TBI to reduce neuroinflammation could serve as a promising therapeutic strategy.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149560"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2025.149560","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Externally caused traumatic brain injury (TBI) poses a woeful worldwide health concern, bringing about disability, death, and prolonged neurological impairment. Increased galectin-3 levels have been linked to unfavorable outcomes in several neurological conditions. This study explores the role of galectin-3 in TBI, specifically examining its contribution to neuroinflammation.
Methods: BV2 microglia cells treated with lipopolysaccharide (LPS) and a mouse model of TBI were applied to investigate the impact of galectin-3 on neuroinflammation following TBI. Western blotting and immunofluorescence labeling were applied for evaluating protein levels and colocalization. Adeno-associated virus (AAV) that targets microglia was used to knock down galectin-3 in microglia. Nissl staining and the modified neurologic severity score were employed in evaluating neural survival and neurological function, and the cognitive impairment following TBI was assessed by the Y-Maze and Morri water maze test.
Results: Galectin-3 expression was shown to rise dramatically after TBI, peaking between days five and seven. In vitro, BV2 cells treated with LPS showed reduced NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation when galectin-3 was inhibited. In LPS-activated microglia, galectin-3 inhibition specifically decreased the expression of Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), p-NF-κB, NLRP3, Apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and Gasdermin D (GSDMD). Injection with AAV containing siRNA to knock down galectin-3 in microglia was operated on mice in vivo. Following TBI, this knockdown led to reduced NLRP3 inflammasome activation, neuronal death, neurological impairments and cognitive impairment.
Conclusions: Our foundings indicate that modulating microglia-derived galectin-3 following TBI to reduce neuroinflammation could serve as a promising therapeutic strategy.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.