Pintu Patra, Cecilia Sanchez, Michael Lanzer, Ulrich S Schwarz
{"title":"Pair cross-correlation analysis for assessing protein co-localization.","authors":"Pintu Patra, Cecilia Sanchez, Michael Lanzer, Ulrich S Schwarz","doi":"10.1016/j.bpj.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring co-localization of different types of molecules is essential to understand molecular organization in biological systems. The pair cross-correlation (PCC) function computed from two-color microscopy images provides a measure of co-localization between differently labeled molecules. Here, we compute a theoretical expression for the PCC function between two molecules using two-dimensional Gaussian distributions as the effective point spread functions for single molecules. Through our analytical calculations, we provide a quantitative description of PCC in the case of multiple signal pairs. By fitting our analytical solutions to simulated images, we can estimate both small and large separation distances. We then apply this method to malaria-infected red blood cells (RBCs) imaged by stimulated emission depletion (STED) microscopy. We cross-correlate the signal for the knob-associated histidine-rich protein (KAHRP), which the parasite uses to remodel the spectrin-actin network of RBCs, with different signals from the RBCs and find that its average separation from the ankyrin junctions increases from 40 nm to 120 nm during the 48 hours of the infectious cycle.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring co-localization of different types of molecules is essential to understand molecular organization in biological systems. The pair cross-correlation (PCC) function computed from two-color microscopy images provides a measure of co-localization between differently labeled molecules. Here, we compute a theoretical expression for the PCC function between two molecules using two-dimensional Gaussian distributions as the effective point spread functions for single molecules. Through our analytical calculations, we provide a quantitative description of PCC in the case of multiple signal pairs. By fitting our analytical solutions to simulated images, we can estimate both small and large separation distances. We then apply this method to malaria-infected red blood cells (RBCs) imaged by stimulated emission depletion (STED) microscopy. We cross-correlate the signal for the knob-associated histidine-rich protein (KAHRP), which the parasite uses to remodel the spectrin-actin network of RBCs, with different signals from the RBCs and find that its average separation from the ankyrin junctions increases from 40 nm to 120 nm during the 48 hours of the infectious cycle.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.