Deep learning based on ultrasound images predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma.

IF 1.8 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING British Journal of Radiology Pub Date : 2025-03-12 DOI:10.1093/bjr/tqaf047
Fengjing Fan, Fei Li, Yixuan Wang, Tong Liu, Kesong Wang, Xiaoming Xi, Bei Wang
{"title":"Deep learning based on ultrasound images predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma.","authors":"Fengjing Fan, Fei Li, Yixuan Wang, Tong Liu, Kesong Wang, Xiaoming Xi, Bei Wang","doi":"10.1093/bjr/tqaf047","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop a deep learning (DL) model based on ultrasound (US) images of lymph nodes for predicting cervical lymph node metastasis (CLNM) in postoperative patients with differentiated thyroid carcinoma (DTC).</p><p><strong>Methods: </strong>Retrospective collection of 352 lymph nodes from 330 patients with cytopathology findings between June 2021 and December 2023 at our institution. The database was randomly divided into the training and test cohort at an 8:2 ratio. The DL basic model of longitudinal and cross-sectional of lymph nodes was constructed based on ResNet50 respectively, and the results of the two basic models were fused (1:1) to construct a longitudinal + cross-sectional DL model. Univariate and multivariate analysis were used to assess US features and construct a conventional US model. Subsequently, a combined model was constructed by integrating DL and US.</p><p><strong>Results: </strong>The diagnostic accuracy of the longitudinal + cross-sectional DL model was higher than that of longitudinal or cross-sectional alone. The AUC of the combined model (US+DL) was 0.855 (95%CI: 0.767-0.942), and the accuracy, sensitivity and specificity were 0.786 (95%CI: 0.671-0.875), 0.972 (95%CI: 0.855-0.999) and 0.588 (95%CI: 0.407-0.754), respectively. Compared with US and DL models, the IDI and NRI of the combined model are both positive.</p><p><strong>Conclusions: </strong>This study preliminary shows that the DL model based on US images of lymph nodes has a high diagnostic efficacy for predicting CLNM in postoperative patients with DTC, and the combined model of US+DL is superior to single conventional US and DL for predicting CLNM in this population.</p><p><strong>Advances in knowledge: </strong>We innovatively used DL of lymph node US images to predict the status of cervical lymph nodes in postoperative patients with DTC.</p>","PeriodicalId":9306,"journal":{"name":"British Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjr/tqaf047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop a deep learning (DL) model based on ultrasound (US) images of lymph nodes for predicting cervical lymph node metastasis (CLNM) in postoperative patients with differentiated thyroid carcinoma (DTC).

Methods: Retrospective collection of 352 lymph nodes from 330 patients with cytopathology findings between June 2021 and December 2023 at our institution. The database was randomly divided into the training and test cohort at an 8:2 ratio. The DL basic model of longitudinal and cross-sectional of lymph nodes was constructed based on ResNet50 respectively, and the results of the two basic models were fused (1:1) to construct a longitudinal + cross-sectional DL model. Univariate and multivariate analysis were used to assess US features and construct a conventional US model. Subsequently, a combined model was constructed by integrating DL and US.

Results: The diagnostic accuracy of the longitudinal + cross-sectional DL model was higher than that of longitudinal or cross-sectional alone. The AUC of the combined model (US+DL) was 0.855 (95%CI: 0.767-0.942), and the accuracy, sensitivity and specificity were 0.786 (95%CI: 0.671-0.875), 0.972 (95%CI: 0.855-0.999) and 0.588 (95%CI: 0.407-0.754), respectively. Compared with US and DL models, the IDI and NRI of the combined model are both positive.

Conclusions: This study preliminary shows that the DL model based on US images of lymph nodes has a high diagnostic efficacy for predicting CLNM in postoperative patients with DTC, and the combined model of US+DL is superior to single conventional US and DL for predicting CLNM in this population.

Advances in knowledge: We innovatively used DL of lymph node US images to predict the status of cervical lymph nodes in postoperative patients with DTC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Seismicity patterns before strong earthquakes in Greece
IF 2.3 4区 地球科学Acta GeophysicaPub Date : 2009-03-12 DOI: 10.2478/s11600-009-0004-y
Vassilis Karakostas
Seismicity patterns before strong earthquakes in Greece
IF 2.3 4区 地球科学Acta GeophysicaPub Date : 2009-03-12 DOI: 10.2478/S11600-009-0004-Y
V. Karakostas
来源期刊
British Journal of Radiology
British Journal of Radiology 医学-核医学
CiteScore
5.30
自引率
3.80%
发文量
330
审稿时长
2-4 weeks
期刊介绍: BJR is the international research journal of the British Institute of Radiology and is the oldest scientific journal in the field of radiology and related sciences. Dating back to 1896, BJR’s history is radiology’s history, and the journal has featured some landmark papers such as the first description of Computed Tomography "Computerized transverse axial tomography" by Godfrey Hounsfield in 1973. A valuable historical resource, the complete BJR archive has been digitized from 1896. Quick Facts: - 2015 Impact Factor – 1.840 - Receipt to first decision – average of 6 weeks - Acceptance to online publication – average of 3 weeks - ISSN: 0007-1285 - eISSN: 1748-880X Open Access option
期刊最新文献
A Response to Letter to the Editor: The incidence of lung cancer amongst primary care chest radiograph referrals-an evaluation of national and local datasets within the United Kingdom. Letter to the Editor regarding The incidence of lung cancer amongst primary care chest radiograph referrals-an evaluation of national and local datasets within the United Kingdom. The role and potential of digital breast tomosynthesis in neoadjuvant systemic therapy evaluation for optimising breast cancer management: a pictorial essay. Correlation between sarcopenia and hypertrophy of the future liver remnant in patients undergoing portal vein embolization before liver resection. Prognostic relevance of CT-defined body composition in patients with acute bleeding undergoing endovascular embolization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1