Jovany Azzi, Zeinab Wehbi, Philippe Hussein Kobeissy, Racha Kerek
{"title":"Teaching the Science of Life: A Multidisciplinary Educational Approach to Reproductive Technology Debates Through the Lens of Developmental Biology.","authors":"Jovany Azzi, Zeinab Wehbi, Philippe Hussein Kobeissy, Racha Kerek","doi":"10.1016/j.ydbio.2025.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro fertilization, cryopreservation and pre-implantation genetic testing are transformative reproductive technologies offering hope for individuals facing fertility challenges. Scientifically, understanding the science of developmental biology is essential for comprehending the mechanisms and implications of these technologies. In embryological sciences, biological perspectives identify life as a series of developmental stages ranging from conception to viability, each potentially representing a different 'beginning' of life. However, the concept of ensoulment, rooted in religious and cultural beliefs, introduces a speculative dimension ultimately influencing how legal systems worldwide define and protect human life in the context of reproductive decision-making. Legally, high-profile cases such as 'Sofia Vergara v. Nick Loeb' or 'Quintavalle v. Human Fertilization and Embryology Authority' raise questions about both parental and fetal reproductive rights and consent. This paper highlights the importance of a multidisciplinary approach in developmental biology education for responsible and equitable practices of reproductive technologies. It underscores the importance of incorporating these considerations into the classroom teaching as case study discussions aligned with the DEI approach, to better equip students for the controversies they may encounter in their roles of developmental biologists.</p>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ydbio.2025.03.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro fertilization, cryopreservation and pre-implantation genetic testing are transformative reproductive technologies offering hope for individuals facing fertility challenges. Scientifically, understanding the science of developmental biology is essential for comprehending the mechanisms and implications of these technologies. In embryological sciences, biological perspectives identify life as a series of developmental stages ranging from conception to viability, each potentially representing a different 'beginning' of life. However, the concept of ensoulment, rooted in religious and cultural beliefs, introduces a speculative dimension ultimately influencing how legal systems worldwide define and protect human life in the context of reproductive decision-making. Legally, high-profile cases such as 'Sofia Vergara v. Nick Loeb' or 'Quintavalle v. Human Fertilization and Embryology Authority' raise questions about both parental and fetal reproductive rights and consent. This paper highlights the importance of a multidisciplinary approach in developmental biology education for responsible and equitable practices of reproductive technologies. It underscores the importance of incorporating these considerations into the classroom teaching as case study discussions aligned with the DEI approach, to better equip students for the controversies they may encounter in their roles of developmental biologists.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.