Transcriptome Analysis Reveals the Molecular Mechanism of Pseudomonas with Different Adhesion Abilities on Tilapia Decay.

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Foods Pub Date : 2025-02-26 DOI:10.3390/foods14050795
Liumin Zhuang, Chen Song, Yunru Wei, Jinzhi Han, Li Ni, Chengxu Ruan, Wen Zhang
{"title":"Transcriptome Analysis Reveals the Molecular Mechanism of <i>Pseudomonas</i> with Different Adhesion Abilities on <i>Tilapia</i> Decay.","authors":"Liumin Zhuang, Chen Song, Yunru Wei, Jinzhi Han, Li Ni, Chengxu Ruan, Wen Zhang","doi":"10.3390/foods14050795","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the molecular mechanism of <i>Pseudomonas</i> with varying adhesion capabilities to <i>Tilapia</i>'s intestinal mucus influence the spoilage potential of <i>Tilapia</i>. Sodium chloride(NaCl) was used as an environmental factor to regulate <i>Pseudomonas</i>' adhesion ability. After being exposed to 3.5% NaCl stress, the PS01 strain with low adhesion showed an enhancement in adhesion ability, while the LP-3 strain with high adhesion exhibited a decrease. Correspondingly, the expression of critical adhesion genes, such as <i>flgC</i>, <i>fliC</i>, and <i>cheB</i>, was found to be altered. LP-3, with high adhesion ability, was observed to promote a relative increase in <i>Nocardioides</i> and <i>Cloacibacterium</i> in fish intestines. This led to the production of more volatile compounds, including 2-octen-1-ol Z, 2,3-Octanedione, and Eicosane, thus deepening the spoilage of tilapia. LP-3, with reduced adhesion ability after NaCl regulation, showed a diminished capacity to cause fish spoilage. Transcriptomics analysis was used to examine two <i>Pseudomonas</i> strains that exhibited different adhesion abilities, leading to the identification of an adhesion regulatory network involving flagellar assembly regulation, bacterial chemotaxis, quorum sensing, two-component systems, biofilm formation, and bacterial secretion systems. This study identified the <i>Pseudomonas</i> adhesion regulatory pathway and determined 10 key adhesion-related genes.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050795","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the molecular mechanism of Pseudomonas with varying adhesion capabilities to Tilapia's intestinal mucus influence the spoilage potential of Tilapia. Sodium chloride(NaCl) was used as an environmental factor to regulate Pseudomonas' adhesion ability. After being exposed to 3.5% NaCl stress, the PS01 strain with low adhesion showed an enhancement in adhesion ability, while the LP-3 strain with high adhesion exhibited a decrease. Correspondingly, the expression of critical adhesion genes, such as flgC, fliC, and cheB, was found to be altered. LP-3, with high adhesion ability, was observed to promote a relative increase in Nocardioides and Cloacibacterium in fish intestines. This led to the production of more volatile compounds, including 2-octen-1-ol Z, 2,3-Octanedione, and Eicosane, thus deepening the spoilage of tilapia. LP-3, with reduced adhesion ability after NaCl regulation, showed a diminished capacity to cause fish spoilage. Transcriptomics analysis was used to examine two Pseudomonas strains that exhibited different adhesion abilities, leading to the identification of an adhesion regulatory network involving flagellar assembly regulation, bacterial chemotaxis, quorum sensing, two-component systems, biofilm formation, and bacterial secretion systems. This study identified the Pseudomonas adhesion regulatory pathway and determined 10 key adhesion-related genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
期刊最新文献
A Novel Formulation Based on Resveratrol and Water Extracts from Equisetum arvense, Crataegus curvisepala, Vitex agnus-castus, and Glycine max Inhibits the Gene Expression of Inflammatory and Osteoclastogenic Biomarkers on C2C12 Cells Exposed to Oxidative Stress. Benefits of Essential Oil-Enriched Chitosan on Beef: From Appearance and Odour Improvement to Protection Against Blowfly Oviposition. L-Arabinose Alleviates Functional Constipation in Mice by Regulating Gut Microbiota and Metabolites. Characterizing the Phenolic Compounds in Iron Walnut Oil (Juglans sigillata Dode) Across Chinese Regions. Genomic and Transcriptomic Analysis of Mutant Bacillus subtilis with Enhanced Nattokinase Production via ARTP Mutagenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1