Yiran E Li, Shuolin Liu, Litao Wang, Yuxin Du, Lin Wu, Haoran Chen, Tingfang Zhu, Jie Lin, Shengjun Xiong, Yayu Wang, Qijun Zheng, Rongjun Zou, Ling Lin, Zheyun Li, Lixin Wang, Junbo Ge, Jun Ren, Yingmei Zhang
{"title":"March2 Alleviates Aortic Aneurysm/Dissection by Regulating PKM2 Polymerization.","authors":"Yiran E Li, Shuolin Liu, Litao Wang, Yuxin Du, Lin Wu, Haoran Chen, Tingfang Zhu, Jie Lin, Shengjun Xiong, Yayu Wang, Qijun Zheng, Rongjun Zou, Ling Lin, Zheyun Li, Lixin Wang, Junbo Ge, Jun Ren, Yingmei Zhang","doi":"10.1161/CIRCRESAHA.124.325049","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aortic aneurysm/dissection (AAD) is a life-threatening disease lacking effective pharmacological treatment. Protein ubiquitination plays a pivotal role in cardiovascular diseases. However, the possible contribution of the E3 ubiquitin ligase March2 (membrane-associated RING finger protein 2) to the cause of AAD remains elusive.</p><p><strong>Methods: </strong>Integrated single-cell RNA sequencing analysis was conducted in human AAD tissues. Based on the screening results, we generated a mouse line of smooth muscle cell-specific March2 knockout. β-Aminopropionitrile monofumarate was used to establish AAD. Cleavage under targets and tagmentation and cleavage under targets and tagmentation-quantitative polymerase chain reaction were performed to identify possible target genes for histone H3K18 lactylation.</p><p><strong>Results: </strong>March2 expression was downregulated in aorta from patients with AAD or β-aminopropionitrile monofumarate-induced AAD mice. β-Aminopropionitrile monofumarate-induced AAD was significantly accentuated in March2 global (March2<sup>-/-</sup>) and vascular smooth muscle cell-specific deletion (March2<sup>fl/fl</sup>; Tagln<sup>Cre</sup>) mice, whereas the AAD pathology was rescued by rAAV9-SM22α-March2 (recombinant adeno-associated virus serotype 9 expressing Flag-tagged March2 under SM22α promoter). March2 interacted with PKM2 (pyruvate kinase M2) to promote K33-linked polyubiquitination. Deficiency of March2 lessened PKM2 dimer-to-tetramer conversion in AAD and overtly exacerbated AAD-induced histone H3K18 lactylation in vascular smooth muscle cells by fostering glucose metabolism reprogramming, thereby promoting p53-driven apoptotic transcriptional response-a hallmark of AAD pathogenesis. TEPP-46, a PKM2-specific activator, pronouncedly alleviated March2 deficiency-deteriorated AAD pathology.</p><p><strong>Conclusions: </strong>Our findings demonstrated that March2 is a novel endogenous defender that prevents AAD by inhibiting vascular smooth muscle cell apoptosis, suggesting that March2 represents a potential therapeutic target for AAD.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325049","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Aortic aneurysm/dissection (AAD) is a life-threatening disease lacking effective pharmacological treatment. Protein ubiquitination plays a pivotal role in cardiovascular diseases. However, the possible contribution of the E3 ubiquitin ligase March2 (membrane-associated RING finger protein 2) to the cause of AAD remains elusive.
Methods: Integrated single-cell RNA sequencing analysis was conducted in human AAD tissues. Based on the screening results, we generated a mouse line of smooth muscle cell-specific March2 knockout. β-Aminopropionitrile monofumarate was used to establish AAD. Cleavage under targets and tagmentation and cleavage under targets and tagmentation-quantitative polymerase chain reaction were performed to identify possible target genes for histone H3K18 lactylation.
Results: March2 expression was downregulated in aorta from patients with AAD or β-aminopropionitrile monofumarate-induced AAD mice. β-Aminopropionitrile monofumarate-induced AAD was significantly accentuated in March2 global (March2-/-) and vascular smooth muscle cell-specific deletion (March2fl/fl; TaglnCre) mice, whereas the AAD pathology was rescued by rAAV9-SM22α-March2 (recombinant adeno-associated virus serotype 9 expressing Flag-tagged March2 under SM22α promoter). March2 interacted with PKM2 (pyruvate kinase M2) to promote K33-linked polyubiquitination. Deficiency of March2 lessened PKM2 dimer-to-tetramer conversion in AAD and overtly exacerbated AAD-induced histone H3K18 lactylation in vascular smooth muscle cells by fostering glucose metabolism reprogramming, thereby promoting p53-driven apoptotic transcriptional response-a hallmark of AAD pathogenesis. TEPP-46, a PKM2-specific activator, pronouncedly alleviated March2 deficiency-deteriorated AAD pathology.
Conclusions: Our findings demonstrated that March2 is a novel endogenous defender that prevents AAD by inhibiting vascular smooth muscle cell apoptosis, suggesting that March2 represents a potential therapeutic target for AAD.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.