Katarzyna Fulara, Aneta Ciosek, Olga Hrabia, Monika Cioch-Skoneczny, Krystian Klimczak, Aleksander Poreda
{"title":"Quality Parameters of Wort Produced with Lentil Malt with the Use of Some Enzymatic Preparations.","authors":"Katarzyna Fulara, Aneta Ciosek, Olga Hrabia, Monika Cioch-Skoneczny, Krystian Klimczak, Aleksander Poreda","doi":"10.3390/foods14050848","DOIUrl":null,"url":null,"abstract":"<p><p>Lentils represent a promising alternative for beer production, potentially offering unique benefits and challenges. This study investigates the physicochemical properties of brewer's wort derived from both barley and lentil grains. Specifically, it compares worts produced from raw and malted lentils, with and without the addition of amylase and protease enzymes. Key parameters such as filtration and saccharification times, pH, extract content, color, turbidity, polyphenol content, free amino nitrogen (FAN), nitrogen content, and metal ion and sugar composition were meticulously measured. Results indicate that both raw and malted lentils can be utilized to produce brewer's wort, with the malting process enhancing extract levels. Notably, the addition of amylolytic enzymes resulted in the highest extract levels for both lentil types. Lentil-based worts exhibited significantly higher FAN levels and lower turbidity compared to barley malt worts. Despite barley malt's established advantages in saccharification efficiency, filtration, and extract yield, lentils offer distinct benefits such as elevated FAN levels and unique color profiles. Enzyme treatments play a crucial role in optimizing lentil-based wort production, highlighting the potential for lentils in brewing applications.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050848","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lentils represent a promising alternative for beer production, potentially offering unique benefits and challenges. This study investigates the physicochemical properties of brewer's wort derived from both barley and lentil grains. Specifically, it compares worts produced from raw and malted lentils, with and without the addition of amylase and protease enzymes. Key parameters such as filtration and saccharification times, pH, extract content, color, turbidity, polyphenol content, free amino nitrogen (FAN), nitrogen content, and metal ion and sugar composition were meticulously measured. Results indicate that both raw and malted lentils can be utilized to produce brewer's wort, with the malting process enhancing extract levels. Notably, the addition of amylolytic enzymes resulted in the highest extract levels for both lentil types. Lentil-based worts exhibited significantly higher FAN levels and lower turbidity compared to barley malt worts. Despite barley malt's established advantages in saccharification efficiency, filtration, and extract yield, lentils offer distinct benefits such as elevated FAN levels and unique color profiles. Enzyme treatments play a crucial role in optimizing lentil-based wort production, highlighting the potential for lentils in brewing applications.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds