Kai Zhang, Shanshan Zhao, Zhengran Wang, Ming Cheng, Wan Wang, Qian Yang
{"title":"Construction of an Efficient Engineered Strain for Chaetoglobosin A Bioresource Production from Potato Starch Industrial Waste.","authors":"Kai Zhang, Shanshan Zhao, Zhengran Wang, Ming Cheng, Wan Wang, Qian Yang","doi":"10.3390/foods14050842","DOIUrl":null,"url":null,"abstract":"<p><p>Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing <i>CgMfs</i>, the gene encoding the MFS family's efflux pump, on chassis cells lacking <i>CgXpp1</i>, which have been shown to act as a negative regulator of CheA biosynthesis. As expected, the engineered strain significantly boosted CheA production from 63.19 to 265.93 mg/L after incubation in PDA medium for 10 d, whereas the yield of the engineered strain was remarkably enhanced 2.93-fold compared with the wild type, following 10 d of cultivation utilizing potato starch industrial waste. The addition of metal ions had a positive effect on CheA production, with Cu<sup>2+</sup> being the most effective and improving production to 176.92 mg/L. The optimal fermentation conditions were determined by response surface optimization, and under the optimal conditions, the engineered strain could stably produce CheA with a yield of 197.58 mg/L. This study provided the conditions for reducing production costs while increasing CheA production, as well as new strategies and insights for the production of the target compound.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050842","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing CgMfs, the gene encoding the MFS family's efflux pump, on chassis cells lacking CgXpp1, which have been shown to act as a negative regulator of CheA biosynthesis. As expected, the engineered strain significantly boosted CheA production from 63.19 to 265.93 mg/L after incubation in PDA medium for 10 d, whereas the yield of the engineered strain was remarkably enhanced 2.93-fold compared with the wild type, following 10 d of cultivation utilizing potato starch industrial waste. The addition of metal ions had a positive effect on CheA production, with Cu2+ being the most effective and improving production to 176.92 mg/L. The optimal fermentation conditions were determined by response surface optimization, and under the optimal conditions, the engineered strain could stably produce CheA with a yield of 197.58 mg/L. This study provided the conditions for reducing production costs while increasing CheA production, as well as new strategies and insights for the production of the target compound.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds