Lihong Liu, Siyao Ha, Dan Cao, MingQing Li, Zhiling Li
{"title":"Transposition element MERVL regulates DNA demethylation through TET3 in oxidative-damaged mouse preimplantation embryos.","authors":"Lihong Liu, Siyao Ha, Dan Cao, MingQing Li, Zhiling Li","doi":"10.1186/s10020-025-01143-3","DOIUrl":null,"url":null,"abstract":"<p><p>Transposable elements (TEs) comprise approximately half of eukaryotic genomes and significantly contribute to genome plasticity. In this study, we focused on a specific TE, MERVL, which exhibits particular expression during the 2-cell stage and commonly serves as an indicator of embryonic totipotency. However, its precise role in embryo development remains mysterious. We utilized DRUG-seq to investigate the effects of oxidative damage on genes and TEs expression. Our findings revealed that exposure to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) could induce DNA damage, apoptosis, and incomplete DNA demethylation in embryos, which were potentially associated with MERVL expression. To further explore its function, antisense nucleotides (ASO) targeting MERVL were constructed to knockdown the expression in early embryos. Notably, this knockdown led to the occurrence of DNA damage and apoptosis as early as the 2-cell stage, consequently reducing the number of embryos that could progress to the blastocyst stage. Moreover, we discovered that MERVL exerted an influence on the reprogramming of embryonic DNA methylation. In MERVL-deficient embryos, the activity of the DNA demethylase ten-eleven translocation 3 (TET3) was suppressed, resulting in impaired demethylation when compared to normal development. This impairment might underpin the mechanism that impacts embryonic development. Collectively, our study not only verified the crucial role of MERVL in embryonic development but also probed its regulatory function in DNA methylation reprogramming, thereby laying a solid foundation for further investigations into MERVL's role.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"95"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01143-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transposable elements (TEs) comprise approximately half of eukaryotic genomes and significantly contribute to genome plasticity. In this study, we focused on a specific TE, MERVL, which exhibits particular expression during the 2-cell stage and commonly serves as an indicator of embryonic totipotency. However, its precise role in embryo development remains mysterious. We utilized DRUG-seq to investigate the effects of oxidative damage on genes and TEs expression. Our findings revealed that exposure to hydrogen peroxide (H2O2) could induce DNA damage, apoptosis, and incomplete DNA demethylation in embryos, which were potentially associated with MERVL expression. To further explore its function, antisense nucleotides (ASO) targeting MERVL were constructed to knockdown the expression in early embryos. Notably, this knockdown led to the occurrence of DNA damage and apoptosis as early as the 2-cell stage, consequently reducing the number of embryos that could progress to the blastocyst stage. Moreover, we discovered that MERVL exerted an influence on the reprogramming of embryonic DNA methylation. In MERVL-deficient embryos, the activity of the DNA demethylase ten-eleven translocation 3 (TET3) was suppressed, resulting in impaired demethylation when compared to normal development. This impairment might underpin the mechanism that impacts embryonic development. Collectively, our study not only verified the crucial role of MERVL in embryonic development but also probed its regulatory function in DNA methylation reprogramming, thereby laying a solid foundation for further investigations into MERVL's role.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.