{"title":"De novo design of self-assembling peptides with antimicrobial activity guided by deep learning","authors":"Huayang Liu, Zilin Song, Yu Zhang, Bihan Wu, Dinghao Chen, Ziao Zhou, Hongyue Zhang, Sangshuang Li, Xinping Feng, Jing Huang, Huaimin Wang","doi":"10.1038/s41563-025-02164-3","DOIUrl":null,"url":null,"abstract":"<p>Bioinspired materials based on self-assembling peptides are promising for tackling various challenges in biomedical engineering. While contemporary data-driven approaches have led to the discovery of self-assembling peptides with various structures and properties, predicting the functionalities of these materials is still challenging. Here we describe the deep learning-guided de novo design of antimicrobial materials based on self-assembling peptides targeting bacterial membranes to address the emerging problem of bacterial drug resistance. Our approach integrates non-natural amino acids for enhanced peptide self-assembly and effectively predicts the functional activity of the self-assembling peptide materials with minimal experimental annotation. The designed self-assembling peptide leader displays excellent in vivo therapeutic efficacy against intestinal bacterial infection in mice. Moreover, it exhibits an enhanced biofilm eradication capability and does not induce acquired drug resistance. Mechanistic studies reveal that the designed peptide can self-assemble on bacterial membranes to form nanofibrous structures for killing multidrug-resistant bacteria. This work thus provides a strategy to discover functional peptide materials by customized design.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"15 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02164-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bioinspired materials based on self-assembling peptides are promising for tackling various challenges in biomedical engineering. While contemporary data-driven approaches have led to the discovery of self-assembling peptides with various structures and properties, predicting the functionalities of these materials is still challenging. Here we describe the deep learning-guided de novo design of antimicrobial materials based on self-assembling peptides targeting bacterial membranes to address the emerging problem of bacterial drug resistance. Our approach integrates non-natural amino acids for enhanced peptide self-assembly and effectively predicts the functional activity of the self-assembling peptide materials with minimal experimental annotation. The designed self-assembling peptide leader displays excellent in vivo therapeutic efficacy against intestinal bacterial infection in mice. Moreover, it exhibits an enhanced biofilm eradication capability and does not induce acquired drug resistance. Mechanistic studies reveal that the designed peptide can self-assemble on bacterial membranes to form nanofibrous structures for killing multidrug-resistant bacteria. This work thus provides a strategy to discover functional peptide materials by customized design.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.