Jixiang Yang, Xiaoyan Shi, Shenyong Ye, Chiho Yoon, Zhengguang Lu, Vivek Kakani, Tonghang Han, Junseok Seo, Lihan Shi, Kenji Watanabe, Takashi Taniguchi, Fan Zhang, Long Ju
{"title":"Impact of spin–orbit coupling on superconductivity in rhombohedral graphene","authors":"Jixiang Yang, Xiaoyan Shi, Shenyong Ye, Chiho Yoon, Zhengguang Lu, Vivek Kakani, Tonghang Han, Junseok Seo, Lihan Shi, Kenji Watanabe, Takashi Taniguchi, Fan Zhang, Long Ju","doi":"10.1038/s41563-025-02156-3","DOIUrl":null,"url":null,"abstract":"<p>Spin–orbit coupling (SOC) has played an important role in many topological and correlated electron materials. In graphene-based systems, SOC induced by a transition metal dichalcogenide at close proximity has been shown to drive topological states and strengthen superconductivity. However, in rhombohedral multilayer graphene, a robust platform for electron correlation and topology, superconductivity and the role of SOC remain largely unexplored. Here we report transport measurements of transition metal dichalcogenide-proximitized rhombohedral trilayer graphene. We observed a hole-doped superconducting state SC4 with a critical temperature of 234 mK. On the electron-doped side, we noted an isospin-symmetry-breaking three-quarter-metal phase and observed that the nearby weak superconducting state SC3 is substantially enhanced. Surprisingly, the original superconducting state SC1 in bare rhombohedral trilayer graphene is strongly suppressed in the presence of transition metal dichalcogenide—opposite to the effect of SOC on all other graphene superconductivities. Our observations form the basis of exploring superconductivity and non-Abelian quasiparticles in rhombohedral graphene devices.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"9 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02156-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spin–orbit coupling (SOC) has played an important role in many topological and correlated electron materials. In graphene-based systems, SOC induced by a transition metal dichalcogenide at close proximity has been shown to drive topological states and strengthen superconductivity. However, in rhombohedral multilayer graphene, a robust platform for electron correlation and topology, superconductivity and the role of SOC remain largely unexplored. Here we report transport measurements of transition metal dichalcogenide-proximitized rhombohedral trilayer graphene. We observed a hole-doped superconducting state SC4 with a critical temperature of 234 mK. On the electron-doped side, we noted an isospin-symmetry-breaking three-quarter-metal phase and observed that the nearby weak superconducting state SC3 is substantially enhanced. Surprisingly, the original superconducting state SC1 in bare rhombohedral trilayer graphene is strongly suppressed in the presence of transition metal dichalcogenide—opposite to the effect of SOC on all other graphene superconductivities. Our observations form the basis of exploring superconductivity and non-Abelian quasiparticles in rhombohedral graphene devices.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.