Angel Chyi En We, Anthony D. Stickland, Bradley O. Clarke, Stefano Freguia
{"title":"PFAS removal through foam harvesting during wastewater aeration","authors":"Angel Chyi En We, Anthony D. Stickland, Bradley O. Clarke, Stefano Freguia","doi":"10.1016/j.jhazmat.2025.137936","DOIUrl":null,"url":null,"abstract":"Aeration in wastewater treatment plants (WWTPs) is used for removal of organic matter and nutrients. Here we show that aeration can also lead to removal of per- and polyfluoroalkyl substances (PFAS), by foam fractionation. Rising air bubbles facilitate air-liquid interfacial adsorption of PFAS and spontaneous foaming occurrence. This suggests that some modifications to conventional treatment processes that enable foam removal may be sufficient to achieve PFAS removal at WWTPs. However, high suspended solids concentrations in the mixed liquor suspension within the aerated bioreactors may complicate PFAS removal in foam fractionation, as both air bubbles and suspended biomass retain PFAS. This study explored the feasibility of foam fractionation for PFAS removal and enrichment using actual mixed liquor suspensions with typical total suspended solids concentrations and WWTP-relevant PFAS concentrations. The mechanisms involved in PFAS removal and enrichment in both aqueous and solid phases were suggested, and a mass balance analysis was performed to show PFAS distribution between the two phases. Overall, PFAS removal from the aqueous phase ranged from 70% to 100% for PFAS with perfluorinated carbon numbers ≥ 6, while PFAS with perfluorinated carbon numbers < 6 showed low removal of < 20%. PFAS removal from the solid phase ranged from 20% to 60%, depending on the PFAS species. This study represents an ongoing effort to advance the potential implementation of foam fractionation in aerated bioreactors at WWTPs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"39 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137936","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aeration in wastewater treatment plants (WWTPs) is used for removal of organic matter and nutrients. Here we show that aeration can also lead to removal of per- and polyfluoroalkyl substances (PFAS), by foam fractionation. Rising air bubbles facilitate air-liquid interfacial adsorption of PFAS and spontaneous foaming occurrence. This suggests that some modifications to conventional treatment processes that enable foam removal may be sufficient to achieve PFAS removal at WWTPs. However, high suspended solids concentrations in the mixed liquor suspension within the aerated bioreactors may complicate PFAS removal in foam fractionation, as both air bubbles and suspended biomass retain PFAS. This study explored the feasibility of foam fractionation for PFAS removal and enrichment using actual mixed liquor suspensions with typical total suspended solids concentrations and WWTP-relevant PFAS concentrations. The mechanisms involved in PFAS removal and enrichment in both aqueous and solid phases were suggested, and a mass balance analysis was performed to show PFAS distribution between the two phases. Overall, PFAS removal from the aqueous phase ranged from 70% to 100% for PFAS with perfluorinated carbon numbers ≥ 6, while PFAS with perfluorinated carbon numbers < 6 showed low removal of < 20%. PFAS removal from the solid phase ranged from 20% to 60%, depending on the PFAS species. This study represents an ongoing effort to advance the potential implementation of foam fractionation in aerated bioreactors at WWTPs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.