{"title":"Profiling Nascent Tumor Extracellular Vesicles via Metabolic Timestamping and Aptamer-Driven Specific Click Chemistry","authors":"Qiuyue Wu, Yinyan Zeng, Wencheng Wang, Sinong Liu, Yihao Huang, Yuqian Zhang, Ximing Chen, Zhenlong You, Chi Zhang, Tonghao Wang, Chaoyong Yang, Yanling Song","doi":"10.1021/jacs.5c01973","DOIUrl":null,"url":null,"abstract":"Tumor-derived extracellular vesicles (tEVs) are essential mediators of tumor progression and therapeutic resistance, yet their secretion dynamics and cargo composition in response to therapies remain poorly understood. Here, we present STAMP, <u>s</u>pecific click-<u>t</u>agging driven by <u>a</u>ptamer for tEV labeled with a <u>m</u>etabolic timestam<u>p</u>, which exploits the unique kinetics and thermodynamics of aptamer to significantly enhance the local concentration of clickable probes on tEVs for their covalent attachment to the timestamp, resulting in the selective microfluidic isolation of nascent tEVs following stimulation. In a PD-L1 antibody-treated model, we demonstrated the feasibility of STAMP and revealed a robust positive correlation between the nascent EpCAM<sup>+</sup> EV levels and tumor volume. Proteome profiling of isolated nascent tEVs identified previously unknown upregulated vesicle proteins following immunotherapy, including key regulators of immune activation and suppression, suggesting that tumors orchestrate an intricate dual adaptive response through tEV secretion modulation to simultaneously elicit therapeutic sensitivity and resistance. Notably, among the upregulated proteins, we identified HSP70, whose enhanced presentation on tEVs promotes antitumor immunity and inhibits tumor growth. Thus, STAMP provides an effective gateway for studying EV dynamics with cell-origin accuracy and for identifying potential therapeutic targets based on EV transitions.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"5 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01973","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-derived extracellular vesicles (tEVs) are essential mediators of tumor progression and therapeutic resistance, yet their secretion dynamics and cargo composition in response to therapies remain poorly understood. Here, we present STAMP, specific click-tagging driven by aptamer for tEV labeled with a metabolic timestamp, which exploits the unique kinetics and thermodynamics of aptamer to significantly enhance the local concentration of clickable probes on tEVs for their covalent attachment to the timestamp, resulting in the selective microfluidic isolation of nascent tEVs following stimulation. In a PD-L1 antibody-treated model, we demonstrated the feasibility of STAMP and revealed a robust positive correlation between the nascent EpCAM+ EV levels and tumor volume. Proteome profiling of isolated nascent tEVs identified previously unknown upregulated vesicle proteins following immunotherapy, including key regulators of immune activation and suppression, suggesting that tumors orchestrate an intricate dual adaptive response through tEV secretion modulation to simultaneously elicit therapeutic sensitivity and resistance. Notably, among the upregulated proteins, we identified HSP70, whose enhanced presentation on tEVs promotes antitumor immunity and inhibits tumor growth. Thus, STAMP provides an effective gateway for studying EV dynamics with cell-origin accuracy and for identifying potential therapeutic targets based on EV transitions.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.