Hydrogen-Vacancy-Induced Stable Superconducting Niobium Hydride at High Pressure

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-03-21 DOI:10.1021/jacs.4c15868
Chuanheng Ma, Yuan Ma, Hui Wang, Hongbo Wang, Mi Zhou, Guangtao Liu, Hanyu Liu, Yanming Ma
{"title":"Hydrogen-Vacancy-Induced Stable Superconducting Niobium Hydride at High Pressure","authors":"Chuanheng Ma, Yuan Ma, Hui Wang, Hongbo Wang, Mi Zhou, Guangtao Liu, Hanyu Liu, Yanming Ma","doi":"10.1021/jacs.4c15868","DOIUrl":null,"url":null,"abstract":"In recent years, the discovery of unconventional polyhydrides under high pressure, including notable instances like CaH<sub>6</sub>, YH<sub>9</sub>, and LaH<sub>10</sub>, with superconducting critical temperature (<i>T</i><sub>c</sub>) above 200 K, has ignited considerable interest in the quest for high-temperature superconductivity in hydrogen-based materials. Recent studies have suggested the highly probable existence of hydrogen vacancies in these high-<i>T</i><sub>c</sub> superconducting hydrides, although there is no conclusive evidence. In this study, taking niobium (Nb) hydride as a model, we showcase the observation of nonstoichiometric face-centered cubic (<i>fcc</i>) NbH<sub>4-δ</sub> (δ∼0.23–0.51) at pressures ranging from 113 to 175 GPa, employing <i>in situ</i> high-pressure X-ray diffraction experiments in conjunction with first-principles calculations. Remarkably, our further analyses indicate that the hydrogen vacancies, along with the resulting configurational entropy, play crucial roles in stabilizing this nonstoichiometric <i>fcc</i> NbH<sub>4-δ</sub>. Electrical transport measurements confirmed the superconductivity, as evidenced by zero resistance as well as suppression of <i>T</i><sub>c</sub> with applying magnetic fields, with a <i>T</i><sub>c</sub> reaching up to 34 K. Our current results not only confirm the presence of hydrogen vacancies in high-<i>T</i><sub>c</sub> hydrides, but also provide key insights into the understanding of hydrogen-vacancy-induced stability for nonstoichiometric hydrides under high pressure.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"56 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15868","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the discovery of unconventional polyhydrides under high pressure, including notable instances like CaH6, YH9, and LaH10, with superconducting critical temperature (Tc) above 200 K, has ignited considerable interest in the quest for high-temperature superconductivity in hydrogen-based materials. Recent studies have suggested the highly probable existence of hydrogen vacancies in these high-Tc superconducting hydrides, although there is no conclusive evidence. In this study, taking niobium (Nb) hydride as a model, we showcase the observation of nonstoichiometric face-centered cubic (fcc) NbH4-δ (δ∼0.23–0.51) at pressures ranging from 113 to 175 GPa, employing in situ high-pressure X-ray diffraction experiments in conjunction with first-principles calculations. Remarkably, our further analyses indicate that the hydrogen vacancies, along with the resulting configurational entropy, play crucial roles in stabilizing this nonstoichiometric fcc NbH4-δ. Electrical transport measurements confirmed the superconductivity, as evidenced by zero resistance as well as suppression of Tc with applying magnetic fields, with a Tc reaching up to 34 K. Our current results not only confirm the presence of hydrogen vacancies in high-Tc hydrides, but also provide key insights into the understanding of hydrogen-vacancy-induced stability for nonstoichiometric hydrides under high pressure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Fano Resonance in CO2 Reduction Catalyst Functionalized Quantum Dots Hydrogen-Vacancy-Induced Stable Superconducting Niobium Hydride at High Pressure Conversion of Compositionally Diverse Plastic Waste over Earth-Abundant Sulfides Dissecting the Effects of Cage Structure in the Catalytic Activation of Imide Chlorenium-Ion Donors Competition between Hydrogen and Chalcogen Bonding in Homodimers of Chalcogen Hydrides (H2X)2, X = O, S, Se, Te
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1