LmCHS1 mediates pro-nymphal cuticle formation in Locusta migratoria embryogenesis

IF 2.3 2区 农林科学 Q1 ENTOMOLOGY Journal of insect physiology Pub Date : 2025-03-12 DOI:10.1016/j.jinsphys.2025.104792
Yanjun Huo , Qing Dong , Xiaojian Liu , Jianzhen Zhang , Xueyao Zhang , Min Zhang , Tingting Zhang
{"title":"LmCHS1 mediates pro-nymphal cuticle formation in Locusta migratoria embryogenesis","authors":"Yanjun Huo ,&nbsp;Qing Dong ,&nbsp;Xiaojian Liu ,&nbsp;Jianzhen Zhang ,&nbsp;Xueyao Zhang ,&nbsp;Min Zhang ,&nbsp;Tingting Zhang","doi":"10.1016/j.jinsphys.2025.104792","DOIUrl":null,"url":null,"abstract":"<div><div>The pro-nymphal cuticle, serving as a protective structure that facilitates environmental adaptation, is critical for insect embryonic development. However, the mechanisms governing its formation remain poorly understood. In this study, we investigated the important role of chitin synthase (LmCHS1) in the formation of the pro-nymphal cuticle during embryonic development in <em>Locusta migratoria</em>. The pro-nymphal cuticle begins to form in 8-day-old embryos (E8) and undergoes degradation by E12, coinciding with the preparatory phase (E13-E14) for hatching of the first-instar nymph. Spatiotemporal expression analysis indicated that <em>LmCHS1</em> mRNA levels are elevated before cuticle formation, with protein localization peaking at the plasma membrane during active chitin synthesis (E8-E11). Targeting <em>LmCHS1</em> through embryonic RNA interference (RNAi) resulted in developmental failures during late embryogenesis. Additionally, ultrastructural analysis confirmed that silencing <em>LmCHS1</em> disrupts the normal chitin structure in the pro-nymphal cuticle. Further investigation into the ecological function of <em>LmCHS1</em> in adapting the pro-nymphal cuticle to dry environments revealed that the tolerance of embryo to various dry conditions is significantly reduced after konckdown of <em>LmCHS1</em>. In summary, these findings highlight the essential role of chitin synthase in the formation of the pro-nymphal cuticle in locust embryos, underscoring its importance in embryonic development and adaptation to environmental challenges like desiccation.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"162 ","pages":"Article 104792"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191025000460","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The pro-nymphal cuticle, serving as a protective structure that facilitates environmental adaptation, is critical for insect embryonic development. However, the mechanisms governing its formation remain poorly understood. In this study, we investigated the important role of chitin synthase (LmCHS1) in the formation of the pro-nymphal cuticle during embryonic development in Locusta migratoria. The pro-nymphal cuticle begins to form in 8-day-old embryos (E8) and undergoes degradation by E12, coinciding with the preparatory phase (E13-E14) for hatching of the first-instar nymph. Spatiotemporal expression analysis indicated that LmCHS1 mRNA levels are elevated before cuticle formation, with protein localization peaking at the plasma membrane during active chitin synthesis (E8-E11). Targeting LmCHS1 through embryonic RNA interference (RNAi) resulted in developmental failures during late embryogenesis. Additionally, ultrastructural analysis confirmed that silencing LmCHS1 disrupts the normal chitin structure in the pro-nymphal cuticle. Further investigation into the ecological function of LmCHS1 in adapting the pro-nymphal cuticle to dry environments revealed that the tolerance of embryo to various dry conditions is significantly reduced after konckdown of LmCHS1. In summary, these findings highlight the essential role of chitin synthase in the formation of the pro-nymphal cuticle in locust embryos, underscoring its importance in embryonic development and adaptation to environmental challenges like desiccation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of insect physiology
Journal of insect physiology 生物-昆虫学
CiteScore
4.50
自引率
4.50%
发文量
77
审稿时长
57 days
期刊介绍: All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.
期刊最新文献
Knockdown of a chemosensory protein disrupts soil-guided behavior of a subterranean larval pest. Timing of starvation determines its effects on susceptibility to bacterial infection in female fruit flies independent of host evolutionary history. LmCHS1 mediates pro-nymphal cuticle formation in Locusta migratoria embryogenesis Differential regulation of reproduction and molting by juvenile hormone in aphids AaHR78 mediates the effects of 20E on growth and reproduction in Aedes aegypti
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1